
A soap bubble has radius R and thickness \[d( < < R)\] as shown in the figure. It collapses into a spherical drop. The ratio of excess pressure in the spherical drop to the excess pressure inside the bubble is \[{\left( {\dfrac{R}{{xD}}} \right)^{\dfrac{1}{3}}}\]. Find the value of x.

Answer
164.4k+ views
Hint: For a soap bubble, the pressurized bubble of air is contained within a thin, elastic surface of the liquid having a large volume and surface area. When the bubble bursts, it will form a number of spherical drops with lesser volume and surface area, the difference in pressure causes an audible sound.
Formula Used:
The equation of volume of a soap bubble is given by,
\[4\pi d{R^2} = \dfrac{4}{3}\pi {r^3}\]…………. (1)
Where, \[R\] is the radius of the soap bubble, \[d\] is the diameter of the soap bubble and \[r\] is the radius of the spherical drop.
Complete step by step solution:
To find the value of x we need to find the ratio of excess pressure.
The formula to find the ratio of excess pressure is given by,
\[{P_1} = \dfrac{{4S}}{R}\]..........(Excess pressure of the soap bubble initially)
\[{P_2} = \dfrac{{2S}}{r}\]..........(Excess pressure of the drop finally)
Now, \[\dfrac{{{P_2}}}{{{P_1}}} = \left( {\dfrac{{\dfrac{{4S}}{R}}}{{\dfrac{{2S}}{r}}}} \right)\]
\[\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{2r}}\]
By rearranging the equation (1), the value of r will be written as,
\[r = {\left( {3{R^2}d} \right)^{\dfrac{1}{3}}}\]
Put the value of r in equation (2) then we get,
\[\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{2r}}\]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{2{{\left( {3{R^2}d} \right)}^{\dfrac{1}{3}}}}}\\\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{{{\left( {24d} \right)}^{\dfrac{1}{3}}}}}\]
Therefore, the value of x is 24.
Note:Surface tension is defined as the property of any liquid by virtue of which it tries to minimize its surface area. The surface tension of water provides the necessary wall tension for the formation of the water bubbles. This tendency to minimize the tension on the walls pulls the bubbles into spherical shapes.
Formula Used:
The equation of volume of a soap bubble is given by,
\[4\pi d{R^2} = \dfrac{4}{3}\pi {r^3}\]…………. (1)
Where, \[R\] is the radius of the soap bubble, \[d\] is the diameter of the soap bubble and \[r\] is the radius of the spherical drop.
Complete step by step solution:
To find the value of x we need to find the ratio of excess pressure.
The formula to find the ratio of excess pressure is given by,
\[{P_1} = \dfrac{{4S}}{R}\]..........(Excess pressure of the soap bubble initially)
\[{P_2} = \dfrac{{2S}}{r}\]..........(Excess pressure of the drop finally)
Now, \[\dfrac{{{P_2}}}{{{P_1}}} = \left( {\dfrac{{\dfrac{{4S}}{R}}}{{\dfrac{{2S}}{r}}}} \right)\]
\[\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{2r}}\]
By rearranging the equation (1), the value of r will be written as,
\[r = {\left( {3{R^2}d} \right)^{\dfrac{1}{3}}}\]
Put the value of r in equation (2) then we get,
\[\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{2r}}\]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{2{{\left( {3{R^2}d} \right)}^{\dfrac{1}{3}}}}}\\\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = \dfrac{R}{{{{\left( {24d} \right)}^{\dfrac{1}{3}}}}}\]
Therefore, the value of x is 24.
Note:Surface tension is defined as the property of any liquid by virtue of which it tries to minimize its surface area. The surface tension of water provides the necessary wall tension for the formation of the water bubbles. This tendency to minimize the tension on the walls pulls the bubbles into spherical shapes.
Recently Updated Pages
How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Environmental Chemistry Chapter for JEE Main Chemistry

Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
