
A simple pendulum has a string of length l and bob of mass m. When the bob is at its lower position, it is given the maximum horizontal speed necessary for it to move in a circular path about the point of suspension. The tension in the string at the lowest position of the bob is
A. 6$mg$
B. $3\,mg$
C. $\sqrt {10} \,mg$
D. $4\,mg$
Answer
169.2k+ views
Hint In the question, length and mass are essential parameters. Here, the bob is at a lower position and it is moved along a circular path about the point of the suspension. So, by using the expression of the work-energy theorem, we get the value of the tension in the string.
Formula used:
Kinetic energy $ = \dfrac{1}{2}m{v^2}$
Potential energy $ = mg2l$
Where,
$m$ be the mass, $v$ be the velocity, $g$ be the acceleration due to gravity and $l$ be the length.
Complete step by step answer
Let A be the topmost point of the circle and B be the lowest point of the circle.
Let ${v_1}$and ${v_2}$be the velocities at A and B respectively.
Applying the principle of the conservation of the energy between A and B.
$\dfrac{1}{2}m{v_2}^2 - \dfrac{1}{2}mv_1^2 = mg2l$
Or we written the equation as
$\dfrac{{mv_2^2}}{l} = \dfrac{{mv_1^2}}{l} + 4mg..........\left( 1 \right)$
At the lowest point of the circle B, $\dfrac{{mv_2^2}}{l} = T - mg...........\left( 2 \right)$
At the top most point of the circle A, \[\dfrac{{mv_1^2}}{l} = mg...........\left( 3 \right)\]
Solving all the above three equations, we get
$mg + 4mg = T - mg$
Performing the arithmetic operation in the above equation, we get
$T = 6\,mg.$
Therefore, the tension in the lowest position of the bob is $6\,mg.$
Hence from the above options, option A is correct.
Note In the question, the pendulum is moved about a point of the suspension. So, there must be a potential and kinetic energy. By using the parameters of the work-energy theorem, we get the result.
Formula used:
Kinetic energy $ = \dfrac{1}{2}m{v^2}$
Potential energy $ = mg2l$
Where,
$m$ be the mass, $v$ be the velocity, $g$ be the acceleration due to gravity and $l$ be the length.
Complete step by step answer
Let A be the topmost point of the circle and B be the lowest point of the circle.
Let ${v_1}$and ${v_2}$be the velocities at A and B respectively.
Applying the principle of the conservation of the energy between A and B.
$\dfrac{1}{2}m{v_2}^2 - \dfrac{1}{2}mv_1^2 = mg2l$
Or we written the equation as
$\dfrac{{mv_2^2}}{l} = \dfrac{{mv_1^2}}{l} + 4mg..........\left( 1 \right)$
At the lowest point of the circle B, $\dfrac{{mv_2^2}}{l} = T - mg...........\left( 2 \right)$
At the top most point of the circle A, \[\dfrac{{mv_1^2}}{l} = mg...........\left( 3 \right)\]
Solving all the above three equations, we get
$mg + 4mg = T - mg$
Performing the arithmetic operation in the above equation, we get
$T = 6\,mg.$
Therefore, the tension in the lowest position of the bob is $6\,mg.$
Hence from the above options, option A is correct.
Note In the question, the pendulum is moved about a point of the suspension. So, there must be a potential and kinetic energy. By using the parameters of the work-energy theorem, we get the result.
Recently Updated Pages
Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Molarity vs Molality: Definitions, Formulas & Key Differences

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
