
A simple pendulum consists of a small sphere of mass $m$ suspended by a thread of length $l$. The sphere carries a positive charge $q$. The pendulum is placed in a uniform electric field of strength $E$ directed vertically downwards. Find the period of oscillation of the pendulum due to the electrostatic force acting on the sphere, neglecting the effect of the gravitational force.
Answer
504.1k+ views
Hint: The period of a pendulum is directly proportional to the length of the pendulum and inversely proportional to acceleration due to gravity. Use the relation between $g$ and $E$ to derive the period of the pendulum.
Complete step by step solution:
The period of a pendulum is defined as the time taken by the pendulum to complete one oscillation. Period of a pendulum is independent of factors like mass of the sphere, temperature etc. It depends on the factors like acceleration due to gravity and length of the pendulum. It is mathematically expressed as:
$T = 2\pi \sqrt {\dfrac{l}{g}} $
where, $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
Motion of simple pendulum is simple harmonic motion and the angular frequency of the motion is given by:
$\omega = \sqrt {\dfrac{g}{l}} $
where $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
It is given that the pendulum is under the effect of uniform field $E$, to calculate the effect of electric field on period of pendulum we have to relate the net acceleration obtained due to the uniform field.
Let the charge developed on the pendulum be $q$. The total net force acting on the pendulum is: ${F_{net}} = qE + mg$
This gives, ${F_{net}} = qE + 0$ since the effect of gravitational force is neglected
$ \Rightarrow {F_{net}} = qE$
Also, $F = ma$
Now relating the above two equations, we get $ma = qE$
Here, $a = $ acceleration $ = g$ Therefore, $mg = qE$
$ \Rightarrow g = \dfrac{{qE}}{m}$
Now putting the value of $g$ in the pendulum formula we get:
$T = 2\pi \sqrt {\dfrac{l}{{\dfrac{{qE}}{m}}}} $
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}} $
Therefore, the required value of period of the pendulum is: $T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}}.$
Note: Period of the pendulum is obtained from the calculated angular frequency from the required expression. Pendulums are used as clocks and can be seen in swings. It follows the simple harmonic motion i.e. the motion repeats itself after a certain interval. A simple pendulum consists of a simple bob of negligible mass attached to a string.
Complete step by step solution:
The period of a pendulum is defined as the time taken by the pendulum to complete one oscillation. Period of a pendulum is independent of factors like mass of the sphere, temperature etc. It depends on the factors like acceleration due to gravity and length of the pendulum. It is mathematically expressed as:
$T = 2\pi \sqrt {\dfrac{l}{g}} $
where, $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
Motion of simple pendulum is simple harmonic motion and the angular frequency of the motion is given by:
$\omega = \sqrt {\dfrac{g}{l}} $
where $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
It is given that the pendulum is under the effect of uniform field $E$, to calculate the effect of electric field on period of pendulum we have to relate the net acceleration obtained due to the uniform field.
Let the charge developed on the pendulum be $q$. The total net force acting on the pendulum is: ${F_{net}} = qE + mg$
This gives, ${F_{net}} = qE + 0$ since the effect of gravitational force is neglected
$ \Rightarrow {F_{net}} = qE$
Also, $F = ma$
Now relating the above two equations, we get $ma = qE$
Here, $a = $ acceleration $ = g$ Therefore, $mg = qE$
$ \Rightarrow g = \dfrac{{qE}}{m}$
Now putting the value of $g$ in the pendulum formula we get:
$T = 2\pi \sqrt {\dfrac{l}{{\dfrac{{qE}}{m}}}} $
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}} $
Therefore, the required value of period of the pendulum is: $T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}}.$
Note: Period of the pendulum is obtained from the calculated angular frequency from the required expression. Pendulums are used as clocks and can be seen in swings. It follows the simple harmonic motion i.e. the motion repeats itself after a certain interval. A simple pendulum consists of a simple bob of negligible mass attached to a string.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

