
A simple pendulum consists of a small sphere of mass $m$ suspended by a thread of length $l$. The sphere carries a positive charge $q$. The pendulum is placed in a uniform electric field of strength $E$ directed vertically downwards. Find the period of oscillation of the pendulum due to the electrostatic force acting on the sphere, neglecting the effect of the gravitational force.
Answer
520.6k+ views
Hint: The period of a pendulum is directly proportional to the length of the pendulum and inversely proportional to acceleration due to gravity. Use the relation between $g$ and $E$ to derive the period of the pendulum.
Complete step by step solution:
The period of a pendulum is defined as the time taken by the pendulum to complete one oscillation. Period of a pendulum is independent of factors like mass of the sphere, temperature etc. It depends on the factors like acceleration due to gravity and length of the pendulum. It is mathematically expressed as:
$T = 2\pi \sqrt {\dfrac{l}{g}} $
where, $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
Motion of simple pendulum is simple harmonic motion and the angular frequency of the motion is given by:
$\omega = \sqrt {\dfrac{g}{l}} $
where $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
It is given that the pendulum is under the effect of uniform field $E$, to calculate the effect of electric field on period of pendulum we have to relate the net acceleration obtained due to the uniform field.
Let the charge developed on the pendulum be $q$. The total net force acting on the pendulum is: ${F_{net}} = qE + mg$
This gives, ${F_{net}} = qE + 0$ since the effect of gravitational force is neglected
$ \Rightarrow {F_{net}} = qE$
Also, $F = ma$
Now relating the above two equations, we get $ma = qE$
Here, $a = $ acceleration $ = g$ Therefore, $mg = qE$
$ \Rightarrow g = \dfrac{{qE}}{m}$
Now putting the value of $g$ in the pendulum formula we get:
$T = 2\pi \sqrt {\dfrac{l}{{\dfrac{{qE}}{m}}}} $
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}} $
Therefore, the required value of period of the pendulum is: $T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}}.$
Note: Period of the pendulum is obtained from the calculated angular frequency from the required expression. Pendulums are used as clocks and can be seen in swings. It follows the simple harmonic motion i.e. the motion repeats itself after a certain interval. A simple pendulum consists of a simple bob of negligible mass attached to a string.
Complete step by step solution:
The period of a pendulum is defined as the time taken by the pendulum to complete one oscillation. Period of a pendulum is independent of factors like mass of the sphere, temperature etc. It depends on the factors like acceleration due to gravity and length of the pendulum. It is mathematically expressed as:
$T = 2\pi \sqrt {\dfrac{l}{g}} $
where, $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
Motion of simple pendulum is simple harmonic motion and the angular frequency of the motion is given by:
$\omega = \sqrt {\dfrac{g}{l}} $
where $l$ = length of the pendulum.
$g$ = acceleration due to gravity.
It is given that the pendulum is under the effect of uniform field $E$, to calculate the effect of electric field on period of pendulum we have to relate the net acceleration obtained due to the uniform field.
Let the charge developed on the pendulum be $q$. The total net force acting on the pendulum is: ${F_{net}} = qE + mg$
This gives, ${F_{net}} = qE + 0$ since the effect of gravitational force is neglected
$ \Rightarrow {F_{net}} = qE$
Also, $F = ma$
Now relating the above two equations, we get $ma = qE$
Here, $a = $ acceleration $ = g$ Therefore, $mg = qE$
$ \Rightarrow g = \dfrac{{qE}}{m}$
Now putting the value of $g$ in the pendulum formula we get:
$T = 2\pi \sqrt {\dfrac{l}{{\dfrac{{qE}}{m}}}} $
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}} $
Therefore, the required value of period of the pendulum is: $T = 2\pi \sqrt {\dfrac{{lm}}{{qE}}}.$
Note: Period of the pendulum is obtained from the calculated angular frequency from the required expression. Pendulums are used as clocks and can be seen in swings. It follows the simple harmonic motion i.e. the motion repeats itself after a certain interval. A simple pendulum consists of a simple bob of negligible mass attached to a string.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

