
A radioactive sample is undergoing \[\alpha \]decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . What is the average lifetime for the sample?
A. \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
B. \[\dfrac{{\ln \left( {{t_2} + {t_1}} \right)}}{2}\]
C. \[\dfrac{{\left( {{t_1} - {t_2}} \right)}}{{\ln 5}}\]
D. \[\dfrac{{\ln 5}}{{\left( {{t_2} - {t_1}} \right)}}\]
Answer
163.5k+ views
Hint:Radioactive decay is defined as the emission of energy in the form of ionizing radiation. It involves the spontaneous transformation of one element into another. This can happen only by changing the number of protons in the nucleus.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
