
A radioactive sample is undergoing \[\alpha \]decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . What is the average lifetime for the sample?
A. \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
B. \[\dfrac{{\ln \left( {{t_2} + {t_1}} \right)}}{2}\]
C. \[\dfrac{{\left( {{t_1} - {t_2}} \right)}}{{\ln 5}}\]
D. \[\dfrac{{\ln 5}}{{\left( {{t_2} - {t_1}} \right)}}\]
Answer
218.7k+ views
Hint:Radioactive decay is defined as the emission of energy in the form of ionizing radiation. It involves the spontaneous transformation of one element into another. This can happen only by changing the number of protons in the nucleus.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

