
A point mass starts moving in a straight line with constant acceleration "a". At a time t after the beginning of motion, the acceleration changes sign, without change in magnitude. Determine the time \[{t_0}\] from the beginning of the motion in which the point mass returns to the initial position.
A. \[\left( {2 + \sqrt 3 } \right)t\]
B. \[\left( {2 + \sqrt 2 } \right)t\]
C. \[\left( {3 + \sqrt 2 } \right)t\]
D. \[\left( {12 + \sqrt 2 } \right)t\]
Answer
162k+ views
Hint:Point mass is moving with constant acceleration and after time t it will have negative acceleration, to find the total time for the mass in which it returns to initial point. We have to first calculate the time duration between the different points from beginning to end, then add it to get the total time \[{t_0}\].
Formula used :
The expression of equations of motion are,
$v = u + at$
And, \[{v^2} = {u^2} + 2as\]
Complete step by step solution:
Let the body start moving from a point A with acceleration a and initial velocity u and after time t at point B the acceleration changes sign and velocity is v but the acceleration will not be zero and as a result body will still move further in the straight path. After time $t_1$ at point C it will have final velocity v = o and will start moving backward to the initial point A.

For length AB
$v = u + at$
$\Rightarrow v = 0 + at = at$ m/s
And,
\[{v^2} = {u^2} + 2as\\
\Rightarrow a{t^2} = 0 + 2a(AB)\\
\Rightarrow AB = \dfrac{{a{t^2}}}{2}\]
For length BC
$v = u+ at$
\[\Rightarrow 0 = at - a{t_1} \\
\Rightarrow {t_1} = t\]
And,
\[{v^2} = {u^2} + 2as\\
\Rightarrow 0 = a{t^2} - 2a(BC)\\
\Rightarrow BC = \dfrac{{a{t^2}}}{2}\]
Now, the velocity of the body at point C is zero and it will return back to point A and the time taken is $t_2$. From C to A
\[S = ut + \dfrac{1}{2}a{t^2}\\
\Rightarrow \dfrac{{a{t^2}}}{2} + \dfrac{{a{t^2}}}{2} = 0 + \dfrac{1}{2}at_2^2\\
\Rightarrow a{t^2} = \dfrac{{at_2^2}}{2} \\
\Rightarrow {t_2} = \sqrt 2 t\]
Therefore total time from the beginning in which the point mass returns to initial position will be,
\[{t_0} = t + {t_1} + {t_2} \\
\Rightarrow {t_0} = t + t + \sqrt 2 t \\
\Rightarrow {t_0} = \,2t + \sqrt 2 t \\
\therefore {t_0} = \left( {2 + \sqrt 2 } \right)t\]
Hence, for point mass to start from the beginning and then return to the initial point it will take time \[\left( {2 + \sqrt 2 } \right)t\].
Therefore, option B is the correct answer.
Note: One of the limitations of Newton’s Equation of mechanics is that they are not applicable for bodies having speed near speed of light. Moreover, equations of motion in physics are equations that explain how a physical system behaves in terms of how its motion changes over time. The behaviour of a physical system is described in further detail by the equations of motion as a collection of mathematical functions expressed in terms of dynamic variables. These variables typically consist of space, time, and sometimes elements of momentum.
Formula used :
The expression of equations of motion are,
$v = u + at$
And, \[{v^2} = {u^2} + 2as\]
Complete step by step solution:
Let the body start moving from a point A with acceleration a and initial velocity u and after time t at point B the acceleration changes sign and velocity is v but the acceleration will not be zero and as a result body will still move further in the straight path. After time $t_1$ at point C it will have final velocity v = o and will start moving backward to the initial point A.

For length AB
$v = u + at$
$\Rightarrow v = 0 + at = at$ m/s
And,
\[{v^2} = {u^2} + 2as\\
\Rightarrow a{t^2} = 0 + 2a(AB)\\
\Rightarrow AB = \dfrac{{a{t^2}}}{2}\]
For length BC
$v = u+ at$
\[\Rightarrow 0 = at - a{t_1} \\
\Rightarrow {t_1} = t\]
And,
\[{v^2} = {u^2} + 2as\\
\Rightarrow 0 = a{t^2} - 2a(BC)\\
\Rightarrow BC = \dfrac{{a{t^2}}}{2}\]
Now, the velocity of the body at point C is zero and it will return back to point A and the time taken is $t_2$. From C to A
\[S = ut + \dfrac{1}{2}a{t^2}\\
\Rightarrow \dfrac{{a{t^2}}}{2} + \dfrac{{a{t^2}}}{2} = 0 + \dfrac{1}{2}at_2^2\\
\Rightarrow a{t^2} = \dfrac{{at_2^2}}{2} \\
\Rightarrow {t_2} = \sqrt 2 t\]
Therefore total time from the beginning in which the point mass returns to initial position will be,
\[{t_0} = t + {t_1} + {t_2} \\
\Rightarrow {t_0} = t + t + \sqrt 2 t \\
\Rightarrow {t_0} = \,2t + \sqrt 2 t \\
\therefore {t_0} = \left( {2 + \sqrt 2 } \right)t\]
Hence, for point mass to start from the beginning and then return to the initial point it will take time \[\left( {2 + \sqrt 2 } \right)t\].
Therefore, option B is the correct answer.
Note: One of the limitations of Newton’s Equation of mechanics is that they are not applicable for bodies having speed near speed of light. Moreover, equations of motion in physics are equations that explain how a physical system behaves in terms of how its motion changes over time. The behaviour of a physical system is described in further detail by the equations of motion as a collection of mathematical functions expressed in terms of dynamic variables. These variables typically consist of space, time, and sometimes elements of momentum.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
