A plane polarized monochromatic EM wave is traveling a vacuum along Z direction such that at t=t$_{1}$ it is found that at the electric field is zero at a spatial point z$_{1}$The next zero that occurs in its neighbourhood is at z$_{2}$The frequency of the electromagnetic wave is :
$\begin{align}
& A.\dfrac{3\times {{10}^{8}}}{|{{Z}_{2}}-{{Z}_{1}}|} \\
& B.\dfrac{6\times {{10}^{8}}}{|{{Z}_{2}}-{{Z}_{1}}|} \\
& C.\dfrac{1.5\times {{10}^{8}}}{|{{Z}_{2}}-{{Z}_{1}}|} \\
& D.\dfrac{1}{{{t}_{1}}+\dfrac{|{{Z}_{2}}-{{Z}_{1}}|}{3\times {{10}^{8}}}} \\
\end{align}$
Answer
Verified
117.9k+ views
Hint: We need to figure out the electric field at both time T, as both the values of E=0 at time t$_{1}$ and t$_{2}$, hence we can compare them to each other, now we represent the equation in such a way that it shows time t in terms of point z and speed of light.
Complete step-by-step answer:
As of the question we know that,
When time t= t$_{1}$and at point z$_{1}$ we are getting electric field E=0,
So, let us assume that, when time t= t$_{2}$, the wave is at point z$_{2}$, and E=0.
Now if we consider the equation of electric field,
$E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$ .${{E}_{\circ }}$is a constant,$\omega$ is the angular frequency, k is the wave number.
Now placing the value of point Z$_{1}$ at time t$_{1}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}$………. Eq.1
Now placing the value of point Z$_{2}$ at time t$_{2}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$……….. Eq.2
On comparing eq.1 and eq.2 we get,
${{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$
Here ${{E}_{\circ }}$ cancels out each other,
And as in both the sides base value is same hence we can write,
\[-k{{z}_{1}}-\omega {{t}_{1}}=-k{{z}_{2}}-\omega {{t}_{2}}\]
On further solving we get,
${{z}_{1}}-{{z}_{2}}=\dfrac{\omega }{k}({{t}_{1}}-{{t}_{2}})$ ……… eq.3
Where $\omega =2\pi f$,
And $k=\dfrac{2\pi }{\lambda }$ ,
Now putting the value of $\omega$ and k in eq.3,
${{z}_{1}}-{{z}_{2}}=\dfrac{2\pi f\lambda }{2\pi }({{t}_{1}}-{{t}_{2}})$,
We know that $c=f\lambda$ where c is the speed of light,
${{z}_{1}}-{{z}_{2}}=c({{t}_{1}}-{{t}_{2}})$,
We also know that frequency is inversely proportional to time,
Hence, we can represent the following equation in,
$\dfrac{{{z}_{1}}-{{z}_{2}}}{{{t}_{1}}-{{t}_{2}}}=c$,
Or,
$\dfrac{1}{{{t}_{1}}-{{t}_{2}}}=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
As said earlier, that frequency is inversely proportional to time so,
We can write that,
$f=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
Speed of light is, $3\times {{10}^{8}}m/s$
$f=\dfrac{3\times {{10}^{8}}}{{{z}_{1}}-{{z}_{2}}}$(Answer).
We see that our equation does not matches with any of the equation in the options, so we can apply mod operator,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{1}}-{{z}_{2}}|}$,
Then ,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{2}}-{{z}_{1}}|}$,
Therefore option A is the correct option.
Note: In the equation $E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$, z is the direction of propagation, frequency is inversely proportional to time, and $\omega$ is the angular frequency, and k is the wave number, c is the speed of light.
Complete step-by-step answer:
As of the question we know that,
When time t= t$_{1}$and at point z$_{1}$ we are getting electric field E=0,
So, let us assume that, when time t= t$_{2}$, the wave is at point z$_{2}$, and E=0.
Now if we consider the equation of electric field,
$E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$ .${{E}_{\circ }}$is a constant,$\omega$ is the angular frequency, k is the wave number.
Now placing the value of point Z$_{1}$ at time t$_{1}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}$………. Eq.1
Now placing the value of point Z$_{2}$ at time t$_{2}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$……….. Eq.2
On comparing eq.1 and eq.2 we get,
${{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$
Here ${{E}_{\circ }}$ cancels out each other,
And as in both the sides base value is same hence we can write,
\[-k{{z}_{1}}-\omega {{t}_{1}}=-k{{z}_{2}}-\omega {{t}_{2}}\]
,
On further solving we get,
${{z}_{1}}-{{z}_{2}}=\dfrac{\omega }{k}({{t}_{1}}-{{t}_{2}})$ ……… eq.3
Where $\omega =2\pi f$,
And $k=\dfrac{2\pi }{\lambda }$ ,
Now putting the value of $\omega$ and k in eq.3,
${{z}_{1}}-{{z}_{2}}=\dfrac{2\pi f\lambda }{2\pi }({{t}_{1}}-{{t}_{2}})$,
We know that $c=f\lambda$ where c is the speed of light,
${{z}_{1}}-{{z}_{2}}=c({{t}_{1}}-{{t}_{2}})$,
We also know that frequency is inversely proportional to time,
Hence, we can represent the following equation in,
$\dfrac{{{z}_{1}}-{{z}_{2}}}{{{t}_{1}}-{{t}_{2}}}=c$,
Or,
$\dfrac{1}{{{t}_{1}}-{{t}_{2}}}=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
As said earlier, that frequency is inversely proportional to time so,
We can write that,
$f=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
Speed of light is, $3\times {{10}^{8}}m/s$
$f=\dfrac{3\times {{10}^{8}}}{{{z}_{1}}-{{z}_{2}}}$(Answer).
We see that our equation does not matches with any of the equation in the options, so we can apply mod operator,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{1}}-{{z}_{2}}|}$,
Then ,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{2}}-{{z}_{1}}|}$,
Therefore option A is the correct option.
Note: In the equation $E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$, z is the direction of propagation, frequency is inversely proportional to time, and $\omega$ is the angular frequency, and k is the wave number, c is the speed of light.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main