
A particle with restoring force proportional to the displacement and resisting force proportional to velocity is subjected to a force \[F\sin \omega \]. If the amplitude of the particle is maximum for \[\omega = {\omega _1}\]and the energy of the particle is maximum for \[\omega = {\omega _2}\]then (where \[{\omega _0}\]natural frequency of oscillation of particle)
A. \[{\omega _1} = {\omega _0}\]and \[{\omega _2} \ne {\omega _0}\]
B. \[{\omega _1} = {\omega _0}\]and \[{\omega _2} = {\omega _0}\]
C. \[{\omega _1} \ne {\omega _0}\]and \[{\omega _2} = {\omega _0}\]
D. \[{\omega _1} \ne {\omega _0}\]and\[{\omega _2} \ne {\omega _0}\]
Answer
162k+ views
Hint:In this question, we are given with a particle whose restoring force is proportional to the displacement and resisting force is proportional to velocity which is subjected to a force \[F\sin \omega \]. In order to find the condition at which the amplitude of the particle is maximum and the energy is maximum, we have to apply the concept of resonance.
Complete step by step solution:
We know, resonance is basically a phenomenon where a body is set into oscillation of high amplitude by the influence of another vibrating body having the same natural frequency.
Given that \[{\omega _0}\] natural frequency of oscillation of the particle. We know that the amplitude and the velocity resonance occur at the same frequency and since restoring force is proportional to the displacement and resisting force is proportional to velocity, we can say
\[{\omega _1} = {\omega _0}\] and \[{\omega _2} = {\omega _0}\]
Therefore option B is correct.
Note: We must note that the restoring force and the resisting force are totally different, in restoring force the particle in motion always tends to come back to its equilibrium position as in case of spring and in case of resisting force the particle in motion do not come back to its equilibrium position, like friction force.
Complete step by step solution:
We know, resonance is basically a phenomenon where a body is set into oscillation of high amplitude by the influence of another vibrating body having the same natural frequency.
Given that \[{\omega _0}\] natural frequency of oscillation of the particle. We know that the amplitude and the velocity resonance occur at the same frequency and since restoring force is proportional to the displacement and resisting force is proportional to velocity, we can say
\[{\omega _1} = {\omega _0}\] and \[{\omega _2} = {\omega _0}\]
Therefore option B is correct.
Note: We must note that the restoring force and the resisting force are totally different, in restoring force the particle in motion always tends to come back to its equilibrium position as in case of spring and in case of resisting force the particle in motion do not come back to its equilibrium position, like friction force.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

Difference Between Speed and Velocity

JEE Main Cut-Off For NIT Calicut 2025: Expected & Previous Year Cut-Off Trends

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees - Conversion, Solved Examples and FAQs

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE
