
A particle of mass m moving with horizontal speed \[6{\text{ }}m/sec\] as shown in figure. If \[m < < M\;\] then for one dimensional elastic collision, the speed of lighter particles after collision will be ?

A. $2{\text{ }}m/\sec $ in original direction
B. $2{\text{ }}m/\sec $ opposite to the original direction
C. ${\text{4 }}m/\sec $ opposite to the original direction
D. ${\text{4 }}m/\sec $ in original direction
Answer
217.5k+ views
Hint:In this question, we are given the mass of two particles and their initial speed. We have to find the final speed of the particle with a smaller mass. Put the given values in the formula ${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$. As the mass of the first particle is very small then the mass of the second particle. We’ll put $m = 0$.
Formula used:
When two bodies collides (elastically) then the speeds are;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$, ${v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}}$
Here, ${m_1},{m_2}$ and ${u_1},{u_2}$ are the masses and initial speed of both the bodies respectively.
Complete step by step solution:
Given that,
Mass of the particle $1$, ${m_1} = m$
Mass of the particle $2$, ${m_2} = M$
Initial speed of the particle $1$, ${u_1} = 6{\text{ }}m/s$
Initial speed of the particle $2$, ${u_2} = 4{\text{ }}m/s$
The nature of collision is elastic. Therefore, the final speed of the particle $1$ will be;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$
Substitute all the given values in the above formula,
${v_1} = \dfrac{{\left( {m - M} \right)\left( 6 \right) + 2\left( M \right)\left( 4 \right)}}{{m + M}}$
${v_1} = \dfrac{{\left( {m - M} \right)\left( 6 \right) + 8M}}{{m + M}}$
As, \[m < < M\;\] put $m = 0$
It implies that, ${v_1} = \dfrac{{2M}}{M}$
${v_1} = 2{\text{ }}m/\sec $
Now, the speed is positive. Therefore, it will move in the original direction.
Hence, option A is the correct answer i.e., $2{\text{ }}m/\sec $ in the original direction.
Note: When a system has an elastic collision then there is no net kinetic energy loss as a result of the collision. Momentum and kinetic energy are preserved in elastic collisions. When kinetic energy is lost, an inelastic collision happens. In an inelastic collision, the system's momentum is preserved, but its kinetic energy is not.
Formula used:
When two bodies collides (elastically) then the speeds are;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$, ${v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}}$
Here, ${m_1},{m_2}$ and ${u_1},{u_2}$ are the masses and initial speed of both the bodies respectively.
Complete step by step solution:
Given that,
Mass of the particle $1$, ${m_1} = m$
Mass of the particle $2$, ${m_2} = M$
Initial speed of the particle $1$, ${u_1} = 6{\text{ }}m/s$
Initial speed of the particle $2$, ${u_2} = 4{\text{ }}m/s$
The nature of collision is elastic. Therefore, the final speed of the particle $1$ will be;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$
Substitute all the given values in the above formula,
${v_1} = \dfrac{{\left( {m - M} \right)\left( 6 \right) + 2\left( M \right)\left( 4 \right)}}{{m + M}}$
${v_1} = \dfrac{{\left( {m - M} \right)\left( 6 \right) + 8M}}{{m + M}}$
As, \[m < < M\;\] put $m = 0$
It implies that, ${v_1} = \dfrac{{2M}}{M}$
${v_1} = 2{\text{ }}m/\sec $
Now, the speed is positive. Therefore, it will move in the original direction.
Hence, option A is the correct answer i.e., $2{\text{ }}m/\sec $ in the original direction.
Note: When a system has an elastic collision then there is no net kinetic energy loss as a result of the collision. Momentum and kinetic energy are preserved in elastic collisions. When kinetic energy is lost, an inelastic collision happens. In an inelastic collision, the system's momentum is preserved, but its kinetic energy is not.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

