
A particle moves along the x-axis obeying the equation $x = t\left( {t - 1} \right)\left( {t - 2} \right)$, where $x$ is in meter and $t$ is in second. Find the initial velocity of the particle $(m/s)$.
Answer
232.8k+ views
Hint: Initial Velocity is the velocity at time interval $t = 0$ and it is represented by $u$. It is the velocity at which the motion starts.
To determine the initial velocity of the particle, we need to expand the given equation and then differentiate it with respect to $t$.
Formula Used:
Sum or difference rule of the derivative is given by:
$(f \pm g)' = f' \pm g'$
Complete step by step solution:
In the question, the equation of the path of particle is given by $x = t\left( {t - 1} \right)\left( {t - 2} \right)$
Expand the given equation, then we have:
$x = ({t^2} - t)\left( {t - 2} \right) \\$
$\Rightarrow x = ({t^3} - 2{t^2} - {t^2} + 2t) \\$
$\Rightarrow x = {t^3} - 3{t^2} + 2t \\$
Differentiate the obtained equation with respect to $t$,
$v = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}({t^3} - 3{t^2} + 2t)$
Apply the sum or difference rule to differentiate the above equation $(f \pm g)' = f' \pm g'$, then:
$v = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {{t^3}} \right) - \dfrac{d}{{dt}}\left( {3{t^2}} \right) + \dfrac{d}{{dt}}\left( {2t} \right) \\$
$\Rightarrow v = \dfrac{{dx}}{{dt}} = 3{t^2} - 6t + 2 \\$
And initial velocity is the velocity of particle at time $t = 0$, hence substitute $t = 0$in the value of $v$:
$v = 3{(0)^2} - 6(0) + 2 \\$
$\Rightarrow v = 0 - 0 + 2 \\$
$\Rightarrow v = 2m/s$
Therefore, the initial velocity of the particle is $2m/s$.
Note: As we know that the equations of motion describe a physical system's behaviour in terms of its motion. Any item subject to forces will accelerate. The object's velocity changes as a result of acceleration. Accordingly, the initial velocity is the object's speed prior to the change brought on by acceleration. The velocity will be the final velocity once the object has been accelerating for a while.
To determine the initial velocity of the particle, we need to expand the given equation and then differentiate it with respect to $t$.
Formula Used:
Sum or difference rule of the derivative is given by:
$(f \pm g)' = f' \pm g'$
Complete step by step solution:
In the question, the equation of the path of particle is given by $x = t\left( {t - 1} \right)\left( {t - 2} \right)$
Expand the given equation, then we have:
$x = ({t^2} - t)\left( {t - 2} \right) \\$
$\Rightarrow x = ({t^3} - 2{t^2} - {t^2} + 2t) \\$
$\Rightarrow x = {t^3} - 3{t^2} + 2t \\$
Differentiate the obtained equation with respect to $t$,
$v = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}({t^3} - 3{t^2} + 2t)$
Apply the sum or difference rule to differentiate the above equation $(f \pm g)' = f' \pm g'$, then:
$v = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {{t^3}} \right) - \dfrac{d}{{dt}}\left( {3{t^2}} \right) + \dfrac{d}{{dt}}\left( {2t} \right) \\$
$\Rightarrow v = \dfrac{{dx}}{{dt}} = 3{t^2} - 6t + 2 \\$
And initial velocity is the velocity of particle at time $t = 0$, hence substitute $t = 0$in the value of $v$:
$v = 3{(0)^2} - 6(0) + 2 \\$
$\Rightarrow v = 0 - 0 + 2 \\$
$\Rightarrow v = 2m/s$
Therefore, the initial velocity of the particle is $2m/s$.
Note: As we know that the equations of motion describe a physical system's behaviour in terms of its motion. Any item subject to forces will accelerate. The object's velocity changes as a result of acceleration. Accordingly, the initial velocity is the object's speed prior to the change brought on by acceleration. The velocity will be the final velocity once the object has been accelerating for a while.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Degree of Dissociation: Meaning, Formula, Calculation & Uses

