Answer
Verified
103.8k+ views
Hint The rms value of the current is determined by using the rms formula of the current and the rms value of the current is equal to the rms of the voltage divided by the inductive capacitance of the capacitor. Then the inductive capacitance is written as the product of the frequency and the capacitance.
Useful formula
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}$
Where, ${I_{rms}}$ is the rms value of the current, ${E_{rms}}$ is the rms value of the voltage and ${X_C}$ is the inductive capacitance.
Complete step by step answer
Given that,
The capacitance of the parallel plate is given as, $C = 100\,pF = 100 \times {10^{ - 12}}\,F$,
The rms value of the voltage is given as, ${E_{rms}} = 230\,V$,
The angular frequency is given as, $\omega = 300\,rad{\operatorname{s} ^{ - 1}}$.
Now,
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}\,....................\left( 1 \right)$
Now, the inductive capacitance is written as ${X_C} = \dfrac{1}{{\omega C}}$. By substituting this equation in the above equation, then the above equation is written as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}$
By rearranging the terms in the above equation, then the above equation is written as,
${I_{rms}} = {E_{rms}} \times \omega C$
By substituting the rms value of the voltage, angular frequency and the capacitance of the parallel plate in the above equation, then the above equation is written as,
${I_{rms}} = 230 \times 300 \times 100 \times {10^{ - 12}}$
By multiplying the terms in the above equation, then the above equation is written as,
${I_{rms}} = 6.9 \times {10^{ - 6}}\,A$
Then the above equation is also be written as,
${I_{rms}} = 6.9\,\mu A$
Thus, the above equation shows the rms value of displacement current.
Hence, the option (A) is the correct answer.
Note The rms value of displacement current is directly proportional to the rms value of the voltage and inversely proportional to the inductive capacitance. As the rms value of the voltage increases, then the rms value of displacement current also increases.
Useful formula
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}$
Where, ${I_{rms}}$ is the rms value of the current, ${E_{rms}}$ is the rms value of the voltage and ${X_C}$ is the inductive capacitance.
Complete step by step answer
Given that,
The capacitance of the parallel plate is given as, $C = 100\,pF = 100 \times {10^{ - 12}}\,F$,
The rms value of the voltage is given as, ${E_{rms}} = 230\,V$,
The angular frequency is given as, $\omega = 300\,rad{\operatorname{s} ^{ - 1}}$.
Now,
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}\,....................\left( 1 \right)$
Now, the inductive capacitance is written as ${X_C} = \dfrac{1}{{\omega C}}$. By substituting this equation in the above equation, then the above equation is written as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}$
By rearranging the terms in the above equation, then the above equation is written as,
${I_{rms}} = {E_{rms}} \times \omega C$
By substituting the rms value of the voltage, angular frequency and the capacitance of the parallel plate in the above equation, then the above equation is written as,
${I_{rms}} = 230 \times 300 \times 100 \times {10^{ - 12}}$
By multiplying the terms in the above equation, then the above equation is written as,
${I_{rms}} = 6.9 \times {10^{ - 6}}\,A$
Then the above equation is also be written as,
${I_{rms}} = 6.9\,\mu A$
Thus, the above equation shows the rms value of displacement current.
Hence, the option (A) is the correct answer.
Note The rms value of displacement current is directly proportional to the rms value of the voltage and inversely proportional to the inductive capacitance. As the rms value of the voltage increases, then the rms value of displacement current also increases.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main
A physical quantity which has a direction A Must be class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main