
A parallel plate condenser of capacity $100\,pF$ is connected to $230\,V$ of AC supply of $300\,rad{\operatorname{s} ^{ - 1}}$ frequency. The rms value of displacement current.
(A) $6.9\,\mu A$
(B) $2.3\,\mu A$
(C) $9.2\,\mu A$
(D) $4.6\,\mu A$
Answer
218.4k+ views
Hint The rms value of the current is determined by using the rms formula of the current and the rms value of the current is equal to the rms of the voltage divided by the inductive capacitance of the capacitor. Then the inductive capacitance is written as the product of the frequency and the capacitance.
Useful formula
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}$
Where, ${I_{rms}}$ is the rms value of the current, ${E_{rms}}$ is the rms value of the voltage and ${X_C}$ is the inductive capacitance.
Complete step by step answer
Given that,
The capacitance of the parallel plate is given as, $C = 100\,pF = 100 \times {10^{ - 12}}\,F$,
The rms value of the voltage is given as, ${E_{rms}} = 230\,V$,
The angular frequency is given as, $\omega = 300\,rad{\operatorname{s} ^{ - 1}}$.
Now,
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}\,....................\left( 1 \right)$
Now, the inductive capacitance is written as ${X_C} = \dfrac{1}{{\omega C}}$. By substituting this equation in the above equation, then the above equation is written as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}$
By rearranging the terms in the above equation, then the above equation is written as,
${I_{rms}} = {E_{rms}} \times \omega C$
By substituting the rms value of the voltage, angular frequency and the capacitance of the parallel plate in the above equation, then the above equation is written as,
${I_{rms}} = 230 \times 300 \times 100 \times {10^{ - 12}}$
By multiplying the terms in the above equation, then the above equation is written as,
${I_{rms}} = 6.9 \times {10^{ - 6}}\,A$
Then the above equation is also be written as,
${I_{rms}} = 6.9\,\mu A$
Thus, the above equation shows the rms value of displacement current.
Hence, the option (A) is the correct answer.
Note The rms value of displacement current is directly proportional to the rms value of the voltage and inversely proportional to the inductive capacitance. As the rms value of the voltage increases, then the rms value of displacement current also increases.
Useful formula
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}$
Where, ${I_{rms}}$ is the rms value of the current, ${E_{rms}}$ is the rms value of the voltage and ${X_C}$ is the inductive capacitance.
Complete step by step answer
Given that,
The capacitance of the parallel plate is given as, $C = 100\,pF = 100 \times {10^{ - 12}}\,F$,
The rms value of the voltage is given as, ${E_{rms}} = 230\,V$,
The angular frequency is given as, $\omega = 300\,rad{\operatorname{s} ^{ - 1}}$.
Now,
The rms value of the current is given as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{{X_C}}}\,....................\left( 1 \right)$
Now, the inductive capacitance is written as ${X_C} = \dfrac{1}{{\omega C}}$. By substituting this equation in the above equation, then the above equation is written as,
${I_{rms}} = \dfrac{{{E_{rms}}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}$
By rearranging the terms in the above equation, then the above equation is written as,
${I_{rms}} = {E_{rms}} \times \omega C$
By substituting the rms value of the voltage, angular frequency and the capacitance of the parallel plate in the above equation, then the above equation is written as,
${I_{rms}} = 230 \times 300 \times 100 \times {10^{ - 12}}$
By multiplying the terms in the above equation, then the above equation is written as,
${I_{rms}} = 6.9 \times {10^{ - 6}}\,A$
Then the above equation is also be written as,
${I_{rms}} = 6.9\,\mu A$
Thus, the above equation shows the rms value of displacement current.
Hence, the option (A) is the correct answer.
Note The rms value of displacement current is directly proportional to the rms value of the voltage and inversely proportional to the inductive capacitance. As the rms value of the voltage increases, then the rms value of displacement current also increases.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

