
A monatomic gas is suddenly compressed to \[\dfrac{1}{8}th\] of its initial volume adiabatically. The ratio of its final pressure to the initial pressure is:
(Given the ratio of the specific heats of the given gas to be \[\dfrac{5}{3}\])
A. 32
B.\[\dfrac{{40}}{3}\]
C.\[\dfrac{{24}}{5}\]
D. 8
Answer
219.9k+ views
Hint: This is the case in which a type of thermodynamic process is taking place. An adiabatic process is the one in which heat is not exchanged from surroundings during expansion or compression.
Formula Used:
The adiabatic equation is written by using following equation:
\[P{V^\gamma } = \text{constant}\]……(i)
Where P is the pressure of the system, V is the volume of the system and \[\gamma \] is the adiabatic index.
The specific heat capacity for an adiabatic process is given by:
\[\dfrac{{{C_p}}}{{{C_v}}} = \gamma \]
where, \[{C_p}\] is the specific heat at constant pressure and \[{C_v}\] is the specific heat at constant volume.
Complete step by step solution:
Given that \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{5}{3}\]
or, \[\gamma = \dfrac{5}{3}\]
Since in an adiabatic process, there is no exchange, so equation (i) can be written as:
\[{P_1}V_1^\gamma = {P_2}V_2^\gamma \]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{{{V_1}}}{{{V_2}}})^{\dfrac{5}{3}}}\]
Given that gas is compressed \[\dfrac{1}{8}\] of its initial volume, the above equation can be written as
\[\dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{8}{1})^{\dfrac{5}{3}}}\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = {(8)^{\dfrac{5}{3}}} = 32\]
Therefore, the ratio of its final pressure to initial pressure is 32.
Hence, Option A is the correct answer.
Note: An adiabatic process should be carried out quickly, so that the heat can be exchanged with the surroundings in enough time. Also, the system in which the adiabatic process is to be conducted should be properly and completely insulated from its surroundings. Otherwise, the adiabatic process can not take place. Since, the system is completely isolated, so there will be no pressure from the surroundings and hence work done in an adiabatic process will be zero. As a result, there will be zero change in internal energy and change in the system will be in the form of work only.
Formula Used:
The adiabatic equation is written by using following equation:
\[P{V^\gamma } = \text{constant}\]……(i)
Where P is the pressure of the system, V is the volume of the system and \[\gamma \] is the adiabatic index.
The specific heat capacity for an adiabatic process is given by:
\[\dfrac{{{C_p}}}{{{C_v}}} = \gamma \]
where, \[{C_p}\] is the specific heat at constant pressure and \[{C_v}\] is the specific heat at constant volume.
Complete step by step solution:
Given that \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{5}{3}\]
or, \[\gamma = \dfrac{5}{3}\]
Since in an adiabatic process, there is no exchange, so equation (i) can be written as:
\[{P_1}V_1^\gamma = {P_2}V_2^\gamma \]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{{{V_1}}}{{{V_2}}})^{\dfrac{5}{3}}}\]
Given that gas is compressed \[\dfrac{1}{8}\] of its initial volume, the above equation can be written as
\[\dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{8}{1})^{\dfrac{5}{3}}}\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = {(8)^{\dfrac{5}{3}}} = 32\]
Therefore, the ratio of its final pressure to initial pressure is 32.
Hence, Option A is the correct answer.
Note: An adiabatic process should be carried out quickly, so that the heat can be exchanged with the surroundings in enough time. Also, the system in which the adiabatic process is to be conducted should be properly and completely insulated from its surroundings. Otherwise, the adiabatic process can not take place. Since, the system is completely isolated, so there will be no pressure from the surroundings and hence work done in an adiabatic process will be zero. As a result, there will be zero change in internal energy and change in the system will be in the form of work only.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

