A merry go round has a radius of 4m and completes a revolution in 2s. Then acceleration of a point on its rim will be:
A) $4{\pi ^2}$
B) $2{\pi ^2}$
C) ${\pi ^2}$
D) $Zero$
Answer
Verified
118.2k+ views
Hint: In this question we have to find the acceleration of a point on the rim of the merry go round. The radius and the time of one revolution are given. To find acceleration, first we will find the velocity and then further we will move with the calculation.
Complete step by step solution:
Given,
$R = 4m$
$t = 2s$
\[Speed = \dfrac{{Distance}}{{Time}}\]
The distance in this question is the rim or circumference of the path. So, the distance will be $2\pi R$. Now, we will put the value of distance and time
\[\Rightarrow Speed = \dfrac{{2\pi R}}{2}\]
\[\Rightarrow Speed = \dfrac{{2\pi \times 4}}{2}\]
\[\Rightarrow Speed = 4\pi \]
Acceleration \[a = \dfrac{{{v^2}}}{R}\]
\[\Rightarrow a = \dfrac{{{{\left( {4\pi } \right)}^2}}}{4}\]
\[\Rightarrow a = 4{\pi ^2}{\text{ m/}}{{\text{s}}^2}\]
Hence, from above calculation we have seen that the value of acceleration is \[a = 4{\pi ^2}{\text{ m/}}{{\text{s}}^2}\].
Note: In this question we have to find the value of acceleration; so we have used the formula of acceleration. Merry go round is a type of amusement ride. It is circular shaped. The motion of a merry go round is circular motion. In this motion the merry go round exerts a centripetal force on the person riding it. The more we move away from the center of circular motion the more centripetal force will be applied on the person riding it. To keep moving in this motion the merry go round must exert more force on the person.
The centripetal force is the force that makes the body follow a curved path. It acts in the perpendicular direction to the body and towards a fixed point. The centripetal force on the person will be given by following formula;
${F_C} = \dfrac{{m{v^2}}}{R}$
Where,
${F_C}$ is the centripetal force in newton (N)
$m$ is mass in kg
$v$ is velocity in m/s
$R$ is the radius of motion in m
Complete step by step solution:
Given,
$R = 4m$
$t = 2s$
\[Speed = \dfrac{{Distance}}{{Time}}\]
The distance in this question is the rim or circumference of the path. So, the distance will be $2\pi R$. Now, we will put the value of distance and time
\[\Rightarrow Speed = \dfrac{{2\pi R}}{2}\]
\[\Rightarrow Speed = \dfrac{{2\pi \times 4}}{2}\]
\[\Rightarrow Speed = 4\pi \]
Acceleration \[a = \dfrac{{{v^2}}}{R}\]
\[\Rightarrow a = \dfrac{{{{\left( {4\pi } \right)}^2}}}{4}\]
\[\Rightarrow a = 4{\pi ^2}{\text{ m/}}{{\text{s}}^2}\]
Hence, from above calculation we have seen that the value of acceleration is \[a = 4{\pi ^2}{\text{ m/}}{{\text{s}}^2}\].
Note: In this question we have to find the value of acceleration; so we have used the formula of acceleration. Merry go round is a type of amusement ride. It is circular shaped. The motion of a merry go round is circular motion. In this motion the merry go round exerts a centripetal force on the person riding it. The more we move away from the center of circular motion the more centripetal force will be applied on the person riding it. To keep moving in this motion the merry go round must exert more force on the person.
The centripetal force is the force that makes the body follow a curved path. It acts in the perpendicular direction to the body and towards a fixed point. The centripetal force on the person will be given by following formula;
${F_C} = \dfrac{{m{v^2}}}{R}$
Where,
${F_C}$ is the centripetal force in newton (N)
$m$ is mass in kg
$v$ is velocity in m/s
$R$ is the radius of motion in m
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main