
When a mass $M$ is attached to the spring of force constant $k$, the spring stretches by $l$. If the mass oscillates with amplitude $l$, what will be the maximum potential energy stored in the spring?
A) $\dfrac{{kl}}{2}$
B) $2kl$
C) $\dfrac{1}{2}Mgl$
D) $Mgl$
Answer
233.1k+ views
Hint:
When a spring is stretched beyond its original length, a force must be given to it; this force relies on the spring constant and the length to which it has been stretched. Due to the length's expansion the potential energy will get stored inside the spring due to work done by this force.
Formula used:
The potential energy stored in the spring will be:
$U = \dfrac{1}{2}k{l^2} \\$
Complete step by step solution:
In order to know that a spring is stretched and extended by a certain amount of length when force is applied to it. $F = kx$ represents the force acting on the spring where $x$ is the spring's expanded extra length after being stretched, and $k$ is a constant.
According to the question, a mass of the spring$M$ is attached to the force which is constant $k$and the spring stretches by $l$. That means, $x = l$
Now, substitute the value of $x = l$in the above formula, then we have:
$F = kl$
Potential energy is the power that an object can store due to its position in relation to other things, internal tensions, electric charge, or other circumstances.
$U = \dfrac{1}{2}m{\omega ^2}{x^2}$
As we know, $Mg$force will act downward, so: $Mg = kl$
Therefore, the potential energy stored in the spring will be:
$U = \dfrac{1}{2}k{l^2} \\$
$\Rightarrow U = \dfrac{1}{2}kl \times l \\$
$\Rightarrow U = \dfrac{{Mgl}}{2} \\$
Thus, the correct option is:(C) $\dfrac{1}{2}Mgl$
Note:
It should be noted that stretching a spring results in the storage of potential energy. The work required to lengthen the spring is equivalent to potential energy. The force needed to extend a spring varies with distance, hence an integral is used in the work calculation.
When a spring is stretched beyond its original length, a force must be given to it; this force relies on the spring constant and the length to which it has been stretched. Due to the length's expansion the potential energy will get stored inside the spring due to work done by this force.
Formula used:
The potential energy stored in the spring will be:
$U = \dfrac{1}{2}k{l^2} \\$
Complete step by step solution:
In order to know that a spring is stretched and extended by a certain amount of length when force is applied to it. $F = kx$ represents the force acting on the spring where $x$ is the spring's expanded extra length after being stretched, and $k$ is a constant.
According to the question, a mass of the spring$M$ is attached to the force which is constant $k$and the spring stretches by $l$. That means, $x = l$
Now, substitute the value of $x = l$in the above formula, then we have:
$F = kl$
Potential energy is the power that an object can store due to its position in relation to other things, internal tensions, electric charge, or other circumstances.
$U = \dfrac{1}{2}m{\omega ^2}{x^2}$
As we know, $Mg$force will act downward, so: $Mg = kl$
Therefore, the potential energy stored in the spring will be:
$U = \dfrac{1}{2}k{l^2} \\$
$\Rightarrow U = \dfrac{1}{2}kl \times l \\$
$\Rightarrow U = \dfrac{{Mgl}}{2} \\$
Thus, the correct option is:(C) $\dfrac{1}{2}Mgl$
Note:
It should be noted that stretching a spring results in the storage of potential energy. The work required to lengthen the spring is equivalent to potential energy. The force needed to extend a spring varies with distance, hence an integral is used in the work calculation.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

