
A length scale $\left( l \right)$ depends on the permittivity $\left( \varepsilon \right)$ of a dielectric material, Boltzmann constant \[\left( {{k_B}} \right)\] , the absolute temperature $\left( T \right)$ , the number per unit volume $\left( n \right)$ of certain charged particles and the charge $\left( q \right)$ carried by each of the particles. Which of the following expression(s) for $l$ is (are) dimensionally correct?
This question has multiple correct options.
A) $l = \sqrt {\left( {\dfrac{{n{q^2}}}{{\varepsilon {k_B}T}}} \right)} $
B) $l = \sqrt {\left( {\dfrac{{\varepsilon {k_B}T}}{{n{q^2}}}} \right)} $
C) $l = \sqrt{\dfrac{q^2}{\varepsilon n^{2/3} k_b T}}$
D) $l = \sqrt{\dfrac{q^2}{\varepsilon n^{1/3} k_b T}}$
Answer
218.4k+ views
Hint: The dimension of $l$ is $\left[ L \right]$ . So, find the dimensions of RHS of all the options and match with that of the length. You have to find out the dimensions of $\dfrac{{{q^2}}}{\varepsilon },{k_B}T$ and $n$ . Option A and B are reciprocal of each other so they can’t be correct simultaneously. Similarly, in option C and D, the raised power of $n$ is different so they also can’t be correct simultaneously.
Complete step by step answer:
As this question has multiple correct options. So, the best way to solve it to eliminate the incorrect options or to check all the options.
We know that the dimension of $l$ is $\left[ L \right]$, so we have to find the dimensions of RHS of all the options and match with that of the length. As all the options contain some common terms that are $\dfrac{{{q^2}}}{\varepsilon },{k_B}T$ and $n$ , so we to find out the dimensions of these quantities.
We know that the potential energy of two equal charges $q$ separated by a distance $r$ from it is given by $P.E = \dfrac{{{q^2}}}{{4\pi {\varepsilon _0}r}}$
So, $\dfrac{{{q^2}}}{\varepsilon } = P.E \times r \times \left( {4\pi } \right)$
For calculating the dimension we can take ${\varepsilon _0}$ as $\varepsilon $ as both will have the same dimension. And $4\pi $ is a dimensionless quantity.
Dimension of $P.E = \left[ {M{L^2}{T^{ - 2}}} \right]$
Dimension of $r = \left[ L \right]$
Therefore, the dimension of $\dfrac{{{q^2}}}{\varepsilon } = \left[ {M{L^2}{T^{ - 2}}} \right]\left[ L \right] = \left[ {M{L^3}{T^{ - 2}}} \right]$
Now, we know that the kinetic energy $KE = \dfrac{3}{2}{k_B}T$ and dimension of $KE = \left[ {M{L^2}{T^{ - 2}}} \right]$ .
As $\dfrac{3}{2}$ is a dimensionless quantity then the dimension of ${k_B}T = \left[ {M{L^2}{T^{ - 2}}} \right]$
Now, $n$ is the number per unit volume and the dimension of volume is $\left[ {{L^3}} \right]$
Therefore the dimension of $n = \left[ {{L^{ - 3}}} \right]$ .
Now, we will find the dimension of all the options.
For option A, dimension will be $\sqrt {\dfrac{{\left[ {{L^{ - 3}}} \right]\left[ {M{L^3}{T^{ - 2}}} \right]}}{{\left[ {M{L^2}{T^{ - 2}}} \right]}}} = \left[ {{L^{ - 1}}} \right]$
For option B, dimension will be $\sqrt {\dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{L^{ - 3}}} \right]\left[ {M{L^3}{T^{ - 2}}} \right]}}} = \left[ L \right]$
For option C, dimension will be $\sqrt{\dfrac{[ML^3 T^{-2}]}{[L^{-3}]^{2/3 }[ML^2 T^{-2}]}}= [L^{3/2}]$
For option D, dimension will be $\sqrt{\dfrac{[ML^3 T^{-2}]}{[L^{-3}]^{1/3 }[ML^2 T^{-2}]}}= [L]$
Therefore the dimensions of option B and D are matched with the dimension of length.
Hence, option B and D are correct.
Note: Dimensions of any physical quantity are those raised powers on base units to specify its unit. Dimensional formula is the expression which shows how and which of the fundamental quantities represent the dimensions of a physical quantity.
Complete step by step answer:
As this question has multiple correct options. So, the best way to solve it to eliminate the incorrect options or to check all the options.
We know that the dimension of $l$ is $\left[ L \right]$, so we have to find the dimensions of RHS of all the options and match with that of the length. As all the options contain some common terms that are $\dfrac{{{q^2}}}{\varepsilon },{k_B}T$ and $n$ , so we to find out the dimensions of these quantities.
We know that the potential energy of two equal charges $q$ separated by a distance $r$ from it is given by $P.E = \dfrac{{{q^2}}}{{4\pi {\varepsilon _0}r}}$
So, $\dfrac{{{q^2}}}{\varepsilon } = P.E \times r \times \left( {4\pi } \right)$
For calculating the dimension we can take ${\varepsilon _0}$ as $\varepsilon $ as both will have the same dimension. And $4\pi $ is a dimensionless quantity.
Dimension of $P.E = \left[ {M{L^2}{T^{ - 2}}} \right]$
Dimension of $r = \left[ L \right]$
Therefore, the dimension of $\dfrac{{{q^2}}}{\varepsilon } = \left[ {M{L^2}{T^{ - 2}}} \right]\left[ L \right] = \left[ {M{L^3}{T^{ - 2}}} \right]$
Now, we know that the kinetic energy $KE = \dfrac{3}{2}{k_B}T$ and dimension of $KE = \left[ {M{L^2}{T^{ - 2}}} \right]$ .
As $\dfrac{3}{2}$ is a dimensionless quantity then the dimension of ${k_B}T = \left[ {M{L^2}{T^{ - 2}}} \right]$
Now, $n$ is the number per unit volume and the dimension of volume is $\left[ {{L^3}} \right]$
Therefore the dimension of $n = \left[ {{L^{ - 3}}} \right]$ .
Now, we will find the dimension of all the options.
For option A, dimension will be $\sqrt {\dfrac{{\left[ {{L^{ - 3}}} \right]\left[ {M{L^3}{T^{ - 2}}} \right]}}{{\left[ {M{L^2}{T^{ - 2}}} \right]}}} = \left[ {{L^{ - 1}}} \right]$
For option B, dimension will be $\sqrt {\dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{L^{ - 3}}} \right]\left[ {M{L^3}{T^{ - 2}}} \right]}}} = \left[ L \right]$
For option C, dimension will be $\sqrt{\dfrac{[ML^3 T^{-2}]}{[L^{-3}]^{2/3 }[ML^2 T^{-2}]}}= [L^{3/2}]$
For option D, dimension will be $\sqrt{\dfrac{[ML^3 T^{-2}]}{[L^{-3}]^{1/3 }[ML^2 T^{-2}]}}= [L]$
Therefore the dimensions of option B and D are matched with the dimension of length.
Hence, option B and D are correct.
Note: Dimensions of any physical quantity are those raised powers on base units to specify its unit. Dimensional formula is the expression which shows how and which of the fundamental quantities represent the dimensions of a physical quantity.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

