
A horizontal turntable in the form of a disc of radius r carries a gun at G and rotates with angular velocity ${\omega _o}$ about a vertical axis passing through the centre O. The increase in angular velocity of the system if the gun fires a bullet of mass m with tangential velocity v with respect to the gun is: (moment of inertia of gun + table about O is ${I_o}$)

A) \[\dfrac{{mvr}}{{{I_o} + m{r^2}}}\]
B) \[\dfrac{{2mvr}}{{{I_o}}}\]
C) $\dfrac{v}{{2r}}$
D) $None$
Answer
233.1k+ views
Hint: Here the net initial angular momentum will be the angular moment of the table ${I_o}{\omega _o}$ in addition to the angular momentum of the disc which is $m{r^2}{\omega _o}$. Similarly, we can write the net final angular momentum. Compare the two momentum by applying conservation of angular momentum (as net external force is zero).
Complete step by step solution:
Here on the system the net external force acting on the system is zero so we can apply conservation of momentum.
The initial moment would be:
${P_i} = \left( {{I_o} + m{r^2}} \right){\omega _o}\widehat k$;
Here:
${P_i}$= Initial Momentum;
${I_o}$= Moment of inertia.
m = Mass;
r = radius;
${\omega _o}$= Angular velocity.
Similarly, the final moment of inertia is given as:
${\overrightarrow P _f} = {I_o}\omega \widehat k + mv'r\left( { - \widehat k} \right)$
Now,
\[{v_{BP}} = {v_{BG}} - {v_{PG}}\] ;
\[ \Rightarrow v\left( {\widehat i} \right) = v'\left( {\widehat i} \right) - \left( { - \omega r} \right)\widehat i\] …(here: \[{v_{BP}} = v\left( {\widehat i} \right)\];\[{v_{BG}} = v'\left( {\widehat i} \right)\]; \[{v_{PG}} = \left( { - \omega r} \right)\widehat i\] )
Write the above equation in terms of v’:
\[ \Rightarrow v\left( {\widehat i} \right) - \left( {\omega r} \right)\widehat i = v'\left( {\widehat i} \right)\];
\[ \Rightarrow v' = v - \omega r\];
Put the above in the equation for final momentum:
\[{P_f} = {I_o}\omega \widehat k + mv'r\left( { - \widehat k} \right)\];
$ \Rightarrow {P_f} = {I_o}\omega \widehat k + m\left( {v - \omega r} \right)r\left( { - \widehat k} \right)$;
Now, apply conservation of angular momentum and equate final and initial momentum together.
$\left( {{I_o} + m{r^2}} \right){\omega _o}\widehat k = {I_o}\omega \widehat k + m\left( {v - \omega r} \right)r\left( { - \widehat k} \right)$;
Cancel out the common:
$ \Rightarrow \left( {{I_o} + m{r^2}} \right){\omega _o} = {I_o}\omega - m\left( {v - \omega r} \right)r$;
Write the above equation in terms of $\omega $,
\[ \Rightarrow \left( {{I_o} + m{r^2}} \right){\omega _o} = {I_o}\omega + m\omega {r^2} - mvr\];
Take the common out:
\[ \Rightarrow \left( {{I_o} + m{r^2}} \right){\omega _o} + mvr = \omega \left( {{I_o} + m{r^2}} \right)\];
\[ \Rightarrow \dfrac{{\left( {{I_o} + m{r^2}} \right){\omega _o} + mvr}}{{\left( {{I_o} + m{r^2}} \right)}} = \omega \];
Now, we calculate the change in angular velocity which is given as:
$\Delta \omega = \omega - {\omega _o}$;
Put in the given value in the above equation:
$\Delta \omega = \left( {\dfrac{{\left( {{I_o} + m{r^2}} \right){\omega _o} + mvr}}{{\left( {{I_o} + m{r^2}} \right)}}} \right) - {\omega _o}$;
Take LCM and solve:
$ \Rightarrow \Delta \omega = \left( {\dfrac{{\left( {{I_o} + m{r^2}} \right){\omega _o} + mvr - \left( {{I_o} + m{r^2}} \right){\omega _o}}}{{\left( {{I_o} + m{r^2}} \right)}}} \right)$;
$ \Rightarrow \Delta \omega = \left( {\dfrac{{mvr}}{{\left( {{I_o} + m{r^2}} \right)}}} \right)$;
Final Answer: Option “A” is correct. The increase in angular velocity of the system if the gun fires a bullet of mass m with tangential velocity v with respect to the gun is$\Delta \omega = \left( {\dfrac{{mvr}}{{\left( {{I_o} + m{r^2}} \right)}}} \right)$.
Note: Here, the change in the angular velocity would be the final angular velocity minus the initial angular velocity. In the final angular momentum, the velocity of bullet w.r.t to the disc would be equal to the velocity of bullet w.r.t ground minus the velocity of disc w.r.t ground.
Complete step by step solution:
Here on the system the net external force acting on the system is zero so we can apply conservation of momentum.
The initial moment would be:
${P_i} = \left( {{I_o} + m{r^2}} \right){\omega _o}\widehat k$;
Here:
${P_i}$= Initial Momentum;
${I_o}$= Moment of inertia.
m = Mass;
r = radius;
${\omega _o}$= Angular velocity.
Similarly, the final moment of inertia is given as:
${\overrightarrow P _f} = {I_o}\omega \widehat k + mv'r\left( { - \widehat k} \right)$
Now,
\[{v_{BP}} = {v_{BG}} - {v_{PG}}\] ;
\[ \Rightarrow v\left( {\widehat i} \right) = v'\left( {\widehat i} \right) - \left( { - \omega r} \right)\widehat i\] …(here: \[{v_{BP}} = v\left( {\widehat i} \right)\];\[{v_{BG}} = v'\left( {\widehat i} \right)\]; \[{v_{PG}} = \left( { - \omega r} \right)\widehat i\] )
Write the above equation in terms of v’:
\[ \Rightarrow v\left( {\widehat i} \right) - \left( {\omega r} \right)\widehat i = v'\left( {\widehat i} \right)\];
\[ \Rightarrow v' = v - \omega r\];
Put the above in the equation for final momentum:
\[{P_f} = {I_o}\omega \widehat k + mv'r\left( { - \widehat k} \right)\];
$ \Rightarrow {P_f} = {I_o}\omega \widehat k + m\left( {v - \omega r} \right)r\left( { - \widehat k} \right)$;
Now, apply conservation of angular momentum and equate final and initial momentum together.
$\left( {{I_o} + m{r^2}} \right){\omega _o}\widehat k = {I_o}\omega \widehat k + m\left( {v - \omega r} \right)r\left( { - \widehat k} \right)$;
Cancel out the common:
$ \Rightarrow \left( {{I_o} + m{r^2}} \right){\omega _o} = {I_o}\omega - m\left( {v - \omega r} \right)r$;
Write the above equation in terms of $\omega $,
\[ \Rightarrow \left( {{I_o} + m{r^2}} \right){\omega _o} = {I_o}\omega + m\omega {r^2} - mvr\];
Take the common out:
\[ \Rightarrow \left( {{I_o} + m{r^2}} \right){\omega _o} + mvr = \omega \left( {{I_o} + m{r^2}} \right)\];
\[ \Rightarrow \dfrac{{\left( {{I_o} + m{r^2}} \right){\omega _o} + mvr}}{{\left( {{I_o} + m{r^2}} \right)}} = \omega \];
Now, we calculate the change in angular velocity which is given as:
$\Delta \omega = \omega - {\omega _o}$;
Put in the given value in the above equation:
$\Delta \omega = \left( {\dfrac{{\left( {{I_o} + m{r^2}} \right){\omega _o} + mvr}}{{\left( {{I_o} + m{r^2}} \right)}}} \right) - {\omega _o}$;
Take LCM and solve:
$ \Rightarrow \Delta \omega = \left( {\dfrac{{\left( {{I_o} + m{r^2}} \right){\omega _o} + mvr - \left( {{I_o} + m{r^2}} \right){\omega _o}}}{{\left( {{I_o} + m{r^2}} \right)}}} \right)$;
$ \Rightarrow \Delta \omega = \left( {\dfrac{{mvr}}{{\left( {{I_o} + m{r^2}} \right)}}} \right)$;
Final Answer: Option “A” is correct. The increase in angular velocity of the system if the gun fires a bullet of mass m with tangential velocity v with respect to the gun is$\Delta \omega = \left( {\dfrac{{mvr}}{{\left( {{I_o} + m{r^2}} \right)}}} \right)$.
Note: Here, the change in the angular velocity would be the final angular velocity minus the initial angular velocity. In the final angular momentum, the velocity of bullet w.r.t to the disc would be equal to the velocity of bullet w.r.t ground minus the velocity of disc w.r.t ground.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

