
A force of 1200 N acts on a 0.5 kg steel ball as a result of a collision lasting 25 ms. If the force is in a direction opposite to the initial velocity of 14 ms$^{-1}$, then the final speed of the steel ball would be?
(a) 24 ms$^{-1}$
(b) 35 ms$^{-1}$
(c) 12 ms$^{-1}$
(d) 46 ms$^{-1}$
Answer
225k+ views
Hint: According to the question it is given that in a ball of 0.5kg 1200N force is acted and as result, we see a collision lasting for 25ms. And it is given that if the force is opposite to the initial velocity of 14 ms$^{-1}$ . Then we have to calculate what will be the final speed of the steel ball. To calculate this, we will use the formula and then simply put the given and obtained data, and hence we will get the required result.
Formula Used:
${\rm{F}}\Delta {\rm{t}} = \Delta p$
Whereas F is the force applied.
$\Delta {\rm{t}}$ is the change in time.
$\Delta p$ change in momentum.
Complete step by step solution:
As pe question values of F = 1200 N
t = 25 ms i.e., $\dfrac{{25}}{{1000}}$ and
m = 0.5 kg
v = -14 (negative because in opposite direction)
Also, we know that momentum is nothing but the product of mass and velocity.
Now, substituting accordingly,
$\begin{array}{c}
1200 \times \dfrac{{25}}{{1000}} = 0.5\left[ {v - \left( { - 14} \right)} \right]\\
\Rightarrow 1.2 \times 50 = v + 14\\
\Rightarrow v = 60 - 14\\
\Rightarrow v = 46
\end{array}$
Hence, the final speed of the steel ball is 46 ms$^{-1}$.
Option ‘D’ is correct
Note: A moving object possesses momentum, which is a property determined by its mass and motion and equal to the product of the object's mass and velocity. The rate at which momentum changes is the same as force. Force is defined as mass times acceleration for a constant mass.
Formula Used:
${\rm{F}}\Delta {\rm{t}} = \Delta p$
Whereas F is the force applied.
$\Delta {\rm{t}}$ is the change in time.
$\Delta p$ change in momentum.
Complete step by step solution:
As pe question values of F = 1200 N
t = 25 ms i.e., $\dfrac{{25}}{{1000}}$ and
m = 0.5 kg
v = -14 (negative because in opposite direction)
Also, we know that momentum is nothing but the product of mass and velocity.
Now, substituting accordingly,
$\begin{array}{c}
1200 \times \dfrac{{25}}{{1000}} = 0.5\left[ {v - \left( { - 14} \right)} \right]\\
\Rightarrow 1.2 \times 50 = v + 14\\
\Rightarrow v = 60 - 14\\
\Rightarrow v = 46
\end{array}$
Hence, the final speed of the steel ball is 46 ms$^{-1}$.
Option ‘D’ is correct
Note: A moving object possesses momentum, which is a property determined by its mass and motion and equal to the product of the object's mass and velocity. The rate at which momentum changes is the same as force. Force is defined as mass times acceleration for a constant mass.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

