
A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then its focal length will:
a) Become zero
b) Become infinite
c) Become small, but non-zero
d) Remain unchanged
Answer
144.6k+ views
Hint As per the question, we need to find the focal length of the convex lens which is dipped in a liquid with the same refractive index, we use the lens maker formula and calculate focal length and use the refractive index with respect to the refractive index of the liquid.
Complete Step by step solution
As we need to find out focal length of a convex lens, we will use lens maker formula, which is as below:
$\dfrac{1}{f} = \left( {\mu - 1} \right)(\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}})......(1)$
Here, $f$ is focal length of convex lens, $\mu $is refractive index of convex lens and ${R_1}$, ${R_2}$ are radius of curvature of both surfaces of lens.
As per the question, the lens is dipped in a liquid whose refractive index. So, the lens maker formula will change because in this case the refractive index of the lens will be calculated with respect to the refractive index of the liquid.
Now, $\dfrac{1}{f} = \left( {\dfrac{{{\mu _1}}}{{{\mu _2}}} - 1} \right)(\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}})......(2)$
Here, ${\mu _1}$ is refractive index of lens and ${\mu _2}$is refractive index of liquid
As given the refractive index of a lens is equal to the refractive index of liquid.
${\mu _1} = {\mu _2}$
So, the ratio of both refractive index will be$1$, we put it in equation $(2)$
$\dfrac{1}{f} = \left( {1 - 1} \right)(\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}})$
$\dfrac{1}{f} = 0$
$ \Rightarrow f = \infty $
Hence the focal length of the lens will be infinite, which is option b.
Note We should keep in mind that as per the question, we will use the lens maker formula to find out the focal length of the convex lens, but this lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. So the formula will change.
Complete Step by step solution
As we need to find out focal length of a convex lens, we will use lens maker formula, which is as below:
$\dfrac{1}{f} = \left( {\mu - 1} \right)(\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}})......(1)$
Here, $f$ is focal length of convex lens, $\mu $is refractive index of convex lens and ${R_1}$, ${R_2}$ are radius of curvature of both surfaces of lens.
As per the question, the lens is dipped in a liquid whose refractive index. So, the lens maker formula will change because in this case the refractive index of the lens will be calculated with respect to the refractive index of the liquid.
Now, $\dfrac{1}{f} = \left( {\dfrac{{{\mu _1}}}{{{\mu _2}}} - 1} \right)(\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}})......(2)$
Here, ${\mu _1}$ is refractive index of lens and ${\mu _2}$is refractive index of liquid
As given the refractive index of a lens is equal to the refractive index of liquid.
${\mu _1} = {\mu _2}$
So, the ratio of both refractive index will be$1$, we put it in equation $(2)$
$\dfrac{1}{f} = \left( {1 - 1} \right)(\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}})$
$\dfrac{1}{f} = 0$
$ \Rightarrow f = \infty $
Hence the focal length of the lens will be infinite, which is option b.
Note We should keep in mind that as per the question, we will use the lens maker formula to find out the focal length of the convex lens, but this lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. So the formula will change.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
