
A circular loop of area \[1c{m^2}\], carrying a current of $10\,A$, is placed in a magnetic field of $0.1\,T$ perpendicular to the plane of the loop. The torque on the loop due to the magnetic field is?
A. Zero
B. \[{10^{ - 4}}N - m\]
C. \[{10^{ - 2}}N - m\]
D. 1 N m
Answer
162.3k+ views
Hint:Torque on the current loop, also known as the magnetic moment, is the product of the current in the loop, the area of cross-section made by the loop, the number of loops that are present and the magnetic field on the loop.
Formula Used:
\[T = NBiA\sin \theta \]
where $T$ is the torque, $N$ is the number of loops, $B$ is the magnetic field, $i$ is the current, A is the area, and \[\theta \] is the angle.
Complete step by step solution:
We have been given that the area of the loop is \[A = 1\,c{m^2}\], carrying a current $i = 10\, A$, placed in a magnetic field of $B = 0.1\,T$ and we have to find the torque on loop due to magnetic field.
We can say that the number of loops is $N = 1$, and as there is a whole loop, we can say that the angle made by the loop is 360 degrees. We can find the torque on the loop as,
\[T = NBiA\sin \theta \\
\Rightarrow T = 1 \times 0.1 \times 10 \times 1 \times \sin \left( {{{360}^ \circ }} \right) \\
\Rightarrow T = 1 \times 0 \\
\therefore T = 0 \]
So, option A zero is the required torque on the loop or required solution.
Note: The angle of loop made should always be mentioned while finding the torque of loop due to its magnetic field. Always see that the measurements are in the same unit to make any calculations.
Formula Used:
\[T = NBiA\sin \theta \]
where $T$ is the torque, $N$ is the number of loops, $B$ is the magnetic field, $i$ is the current, A is the area, and \[\theta \] is the angle.
Complete step by step solution:
We have been given that the area of the loop is \[A = 1\,c{m^2}\], carrying a current $i = 10\, A$, placed in a magnetic field of $B = 0.1\,T$ and we have to find the torque on loop due to magnetic field.
We can say that the number of loops is $N = 1$, and as there is a whole loop, we can say that the angle made by the loop is 360 degrees. We can find the torque on the loop as,
\[T = NBiA\sin \theta \\
\Rightarrow T = 1 \times 0.1 \times 10 \times 1 \times \sin \left( {{{360}^ \circ }} \right) \\
\Rightarrow T = 1 \times 0 \\
\therefore T = 0 \]
So, option A zero is the required torque on the loop or required solution.
Note: The angle of loop made should always be mentioned while finding the torque of loop due to its magnetic field. Always see that the measurements are in the same unit to make any calculations.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main
