A car travels from rest with constant acceleration $'a'$ for $t$ seconds. What is the average speed of the car for its journey, if the car moves along a straight road?
(A) $v = \dfrac{{a{t^2}}}{2}$
(B) $v = 2a{t^2}$
(C) $v = \dfrac{{at}}{2}$
(D) None
Answer
Verified
118.2k+ views
Hint The given problem can be solved by calculating the total distance travelled by car in $t$ seconds. Since the car is moving from rest along a straight road, the initial velocity is taken to be $0$ and the acceleration of the car is uniform at $'a'$. The total distance travelled by car is given by the equation of motion as below.
Formula used: Equation of motion $S = ut + \dfrac{1}{2}a{t^2}$
Complete Step by step solution It is given that the car travels along a straight road. Therefore we will use the equations of motion to find the total distance travelled by car.
Using $S = ut + \dfrac{1}{2}a{t^2}$,
where $S$ is the displacement travelled as the car moves in a straight line,
$u$ is the initial velocity of the car,
$a$ is the acceleration of the car which is given to be $'a'$, and
$t$ is the time taken in seconds for this required calculation.
Since the car travels from rest, the initial velocity of the car is $0$, i.e. $u = 0$.
$ \Rightarrow S = \dfrac{1}{2}a{t^2}$, is the required displacement of the car in $t$ seconds.
Now for finding the average speed of the car in the entire time duration of for $t$ seconds, the required total distance is given by $\dfrac{1}{2}a{t^2}$ as found above. The car travels this distance in $t$ seconds.
We know $Average\,speed = \dfrac{{Total\,displacement}}{{Total\,time\,taken}}$,
Therefore, the average speed
$v = \dfrac{{\dfrac{1}{2}a{t^2}}}{t}$
$ \Rightarrow v = \dfrac{1}{2}at$
Therefore, the correct answer is option (C) $v = \dfrac{{at}}{2}$.
Note In order to find the displacement of the car we have used the equation of motion which can be applied only when the particle (in this case the car) is moving at a constant acceleration. If the acceleration would have been variable, then the differential forms of the equations of motions would have been used.
Formula used: Equation of motion $S = ut + \dfrac{1}{2}a{t^2}$
Complete Step by step solution It is given that the car travels along a straight road. Therefore we will use the equations of motion to find the total distance travelled by car.
Using $S = ut + \dfrac{1}{2}a{t^2}$,
where $S$ is the displacement travelled as the car moves in a straight line,
$u$ is the initial velocity of the car,
$a$ is the acceleration of the car which is given to be $'a'$, and
$t$ is the time taken in seconds for this required calculation.
Since the car travels from rest, the initial velocity of the car is $0$, i.e. $u = 0$.
$ \Rightarrow S = \dfrac{1}{2}a{t^2}$, is the required displacement of the car in $t$ seconds.
Now for finding the average speed of the car in the entire time duration of for $t$ seconds, the required total distance is given by $\dfrac{1}{2}a{t^2}$ as found above. The car travels this distance in $t$ seconds.
We know $Average\,speed = \dfrac{{Total\,displacement}}{{Total\,time\,taken}}$,
Therefore, the average speed
$v = \dfrac{{\dfrac{1}{2}a{t^2}}}{t}$
$ \Rightarrow v = \dfrac{1}{2}at$
Therefore, the correct answer is option (C) $v = \dfrac{{at}}{2}$.
Note In order to find the displacement of the car we have used the equation of motion which can be applied only when the particle (in this case the car) is moving at a constant acceleration. If the acceleration would have been variable, then the differential forms of the equations of motions would have been used.
Recently Updated Pages
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
If ax by czand b2 ac then the value of yis 1dfrac2xzleft class 9 maths JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs