
A body projected with velocity \[u\] at projection angle \[\theta \] has horizontal range. For the same velocity and projection angle, its range on the moon surface will be \[{g_{moon}} = {g_{earth}}/6\]
(A) \[36R\]
(B) \[\dfrac{R}{{36}}\]
(C) \[\dfrac{R}{{16}}\]
(D) \[6R\]
Answer
232.8k+ views
Hint: The range of an object is inversely proportional to the acceleration due to gravity of the location of projection. We need to compare the range of earth to that of the range on the moon using substitution.
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Complete Step-by-Step Solution:
A body is said to be projected at a certain initial velocity \[u\] with an angle of projection \[\theta \] from the horizontal. The range of this certain projectile is said to be \[R\]. This is on earth. We are to find the range of the same projectile, projected with the same velocity and angle of projection, on the moon.
First we shall recall the range of a body is given as
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Hence, on the moon, the range would be
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{{g_m}}}\]
But \[{g_m} = \dfrac{{{g_{earth}}}}{6}\]
Then,
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{\dfrac{{{g_{earth}}}}{6}}} = \dfrac{{6{u^2}\sin 2\theta }}{{{g_{earth}}}}\]
Hence,
\[{R_m} = 6\left( {\dfrac{{{u^2}\sin 2\theta }}{{{g_{earth}}}}} \right)\]
\[ \Rightarrow {R_m} = 6R\]
Hence, the correct option is D.
Note: In actuality, the range would be greater than as estimated. This is because air resistance on earth is high due to the atmosphere of the earth, and this reduces the range from as predicted by the range formula. However on the moon, an atmosphere is almost non-existent, hence, the range is actually very close to as predicted by the range formula. Hence, we can say it is six times the ideal range of that of earth.
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Complete Step-by-Step Solution:
A body is said to be projected at a certain initial velocity \[u\] with an angle of projection \[\theta \] from the horizontal. The range of this certain projectile is said to be \[R\]. This is on earth. We are to find the range of the same projectile, projected with the same velocity and angle of projection, on the moon.
First we shall recall the range of a body is given as
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Hence, on the moon, the range would be
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{{g_m}}}\]
But \[{g_m} = \dfrac{{{g_{earth}}}}{6}\]
Then,
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{\dfrac{{{g_{earth}}}}{6}}} = \dfrac{{6{u^2}\sin 2\theta }}{{{g_{earth}}}}\]
Hence,
\[{R_m} = 6\left( {\dfrac{{{u^2}\sin 2\theta }}{{{g_{earth}}}}} \right)\]
\[ \Rightarrow {R_m} = 6R\]
Hence, the correct option is D.
Note: In actuality, the range would be greater than as estimated. This is because air resistance on earth is high due to the atmosphere of the earth, and this reduces the range from as predicted by the range formula. However on the moon, an atmosphere is almost non-existent, hence, the range is actually very close to as predicted by the range formula. Hence, we can say it is six times the ideal range of that of earth.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

