
A body projected with velocity \[u\] at projection angle \[\theta \] has horizontal range. For the same velocity and projection angle, its range on the moon surface will be \[{g_{moon}} = {g_{earth}}/6\]
(A) \[36R\]
(B) \[\dfrac{R}{{36}}\]
(C) \[\dfrac{R}{{16}}\]
(D) \[6R\]
Answer
232.8k+ views
Hint: The range of an object is inversely proportional to the acceleration due to gravity of the location of projection. We need to compare the range of earth to that of the range on the moon using substitution.
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Complete Step-by-Step Solution:
A body is said to be projected at a certain initial velocity \[u\] with an angle of projection \[\theta \] from the horizontal. The range of this certain projectile is said to be \[R\]. This is on earth. We are to find the range of the same projectile, projected with the same velocity and angle of projection, on the moon.
First we shall recall the range of a body is given as
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Hence, on the moon, the range would be
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{{g_m}}}\]
But \[{g_m} = \dfrac{{{g_{earth}}}}{6}\]
Then,
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{\dfrac{{{g_{earth}}}}{6}}} = \dfrac{{6{u^2}\sin 2\theta }}{{{g_{earth}}}}\]
Hence,
\[{R_m} = 6\left( {\dfrac{{{u^2}\sin 2\theta }}{{{g_{earth}}}}} \right)\]
\[ \Rightarrow {R_m} = 6R\]
Hence, the correct option is D.
Note: In actuality, the range would be greater than as estimated. This is because air resistance on earth is high due to the atmosphere of the earth, and this reduces the range from as predicted by the range formula. However on the moon, an atmosphere is almost non-existent, hence, the range is actually very close to as predicted by the range formula. Hence, we can say it is six times the ideal range of that of earth.
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Complete Step-by-Step Solution:
A body is said to be projected at a certain initial velocity \[u\] with an angle of projection \[\theta \] from the horizontal. The range of this certain projectile is said to be \[R\]. This is on earth. We are to find the range of the same projectile, projected with the same velocity and angle of projection, on the moon.
First we shall recall the range of a body is given as
\[R = \dfrac{{{u^2}\sin 2\theta }}{g}\] where \[R\] is the range of a projectile, \[u\] is the initial velocity of projection, \[\theta \] is the angle of projection (with respect to the horizontal axis) and \[g\] is the acceleration due to gravity.
Hence, on the moon, the range would be
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{{g_m}}}\]
But \[{g_m} = \dfrac{{{g_{earth}}}}{6}\]
Then,
\[{R_m} = \dfrac{{{u^2}\sin 2\theta }}{{\dfrac{{{g_{earth}}}}{6}}} = \dfrac{{6{u^2}\sin 2\theta }}{{{g_{earth}}}}\]
Hence,
\[{R_m} = 6\left( {\dfrac{{{u^2}\sin 2\theta }}{{{g_{earth}}}}} \right)\]
\[ \Rightarrow {R_m} = 6R\]
Hence, the correct option is D.
Note: In actuality, the range would be greater than as estimated. This is because air resistance on earth is high due to the atmosphere of the earth, and this reduces the range from as predicted by the range formula. However on the moon, an atmosphere is almost non-existent, hence, the range is actually very close to as predicted by the range formula. Hence, we can say it is six times the ideal range of that of earth.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

