
A body of mass $\sqrt 3 \,kg$ is suspended by a string to rigid support. The body is pulled horizontally by a force $F$ until the string makes an angle of ${30^ \circ }$ with the vertical. The value of $F$ and tension in the string are:
(A) $9.8\,N$, $9.8\,N$
(B) $9.8\,N$, $19.6\,N$
(C) $19.6\,N$, $19.6\,N$
(D) $19.6\,N$, $9.8\,N$
Answer
224.7k+ views
Hint By using the given information the free body diagram is drawn, by using the information in the diagram the value of force and the value of the tension in the string can be determined. By taking the horizontal component, the value of force can be determined and by using the vertical component the tension of the string can be determined.
Complete step by step solution
Given that,
The mass of the body is, $m = \sqrt 3 \,kg$,
The angle of the string with respect to vertical is, $\theta = {30^ \circ }$,
So, the angle of the string with respect to the horizontal is, $\theta = {60^ \circ }$
By using the given information, the free body diagram is given by,

From the diagram shown above,
To determine the value of the tension on the string, then we use the vertical component of the object, then
$F = T\sin {60^ \circ }$
By substituting the value of the $\sin {60^ \circ }$ from the trigonometry in the above equation, then the above equation is written as,
$F = T \times \dfrac{{\sqrt 3 }}{2}$
Now the force in the above equation is written as,
$mg = T \times \dfrac{{\sqrt 3 }}{2}$
By substituting the mass of the object and the acceleration due to gravity in the above equation, then
$\sqrt 3 \times 9.8 = T \times \dfrac{{\sqrt 3 }}{2}$
By cancelling the same terms in the above equation, then the above equation is written as,
$9.8 = T \times \dfrac{1}{2}$
By rearranging the terms in the above equation, then
$T = 9.8 \times 2$
By multiplying the terms in the above equation, then
$T = 19.6\,N$
From the diagram shown above,
To determine the value of the force, then we use the horizontal component of the object, then
$F = T\cos {60^ \circ }$
By substituting the value of the $\cos {60^ \circ }$ from the trigonometry in the above equation, then the above equation is written as,
$F = T \times \dfrac{1}{2}$
By substituting the value of the tension of the string in the above equation, then
$F = 19.6 \times \dfrac{1}{2}$
By dividing the terms in the above equation, then
$F = 9.8\,N$
Hence, the option (B) is the correct answer.
Note The tension of the string is equated with the product of the mass of the object and the acceleration of the object because from the diagram opposite to the tension equation the component $mg$ is acting, so both are equated. Like that the force equation is equated with $F$ only.
Complete step by step solution
Given that,
The mass of the body is, $m = \sqrt 3 \,kg$,
The angle of the string with respect to vertical is, $\theta = {30^ \circ }$,
So, the angle of the string with respect to the horizontal is, $\theta = {60^ \circ }$
By using the given information, the free body diagram is given by,

From the diagram shown above,
To determine the value of the tension on the string, then we use the vertical component of the object, then
$F = T\sin {60^ \circ }$
By substituting the value of the $\sin {60^ \circ }$ from the trigonometry in the above equation, then the above equation is written as,
$F = T \times \dfrac{{\sqrt 3 }}{2}$
Now the force in the above equation is written as,
$mg = T \times \dfrac{{\sqrt 3 }}{2}$
By substituting the mass of the object and the acceleration due to gravity in the above equation, then
$\sqrt 3 \times 9.8 = T \times \dfrac{{\sqrt 3 }}{2}$
By cancelling the same terms in the above equation, then the above equation is written as,
$9.8 = T \times \dfrac{1}{2}$
By rearranging the terms in the above equation, then
$T = 9.8 \times 2$
By multiplying the terms in the above equation, then
$T = 19.6\,N$
From the diagram shown above,
To determine the value of the force, then we use the horizontal component of the object, then
$F = T\cos {60^ \circ }$
By substituting the value of the $\cos {60^ \circ }$ from the trigonometry in the above equation, then the above equation is written as,
$F = T \times \dfrac{1}{2}$
By substituting the value of the tension of the string in the above equation, then
$F = 19.6 \times \dfrac{1}{2}$
By dividing the terms in the above equation, then
$F = 9.8\,N$
Hence, the option (B) is the correct answer.
Note The tension of the string is equated with the product of the mass of the object and the acceleration of the object because from the diagram opposite to the tension equation the component $mg$ is acting, so both are equated. Like that the force equation is equated with $F$ only.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Mains 2026: Exam Dates and City Intimation slip OUT, Registration Open, Syllabus & Eligibility

JEE Main Candidate Login 2026 and Registration Portal | Form Access

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Half Life of Zero Order Reaction for JEE

Understanding Collisions: Types and Examples for Students

Efficiency of Carnot engine is 100 if A T2273K B T20K class 11 physics JEE_Main

Understanding Displacement and Velocity Time Graphs

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy And Power 2025-26

The figure shows a system of two concentric spheres class 11 physics JEE_Main

The figure shows a system of two concentric spheres class 11 physics JEE_Main

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

