
A body of mass is projected at an angle of with the horizontal. If air resistance is negligible, then what will be the total change in momentum when it strikes the ground?
Answer
155.4k+ views
Hint: In this solution, we will first calculate the component of the projectile body perpendicular to the surface of the Earth when it strikes the ground. The ball after striking the ground will maintain the magnitude of its velocity but reverse its direction.
Complete step by step answer:
We’ve been told a projectile is launched at an angle of with the horizontal. When the projectile is about to complete its motion and collide back with the ground, all its energy will be in the form of kinetic energy when it strikes the ground. This implies that the velocity of the projectile will have the same value when it was launched.
However, the perpendicular component of the velocity will be downwards since the ball will be approaching the ground. If the projectile of the velocity is denoted by , its component perpendicular to the ground will be .
Now when the ball strikes the ground it will bounce back up. But this time, it will have a perpendicular velocity in the upwards direction that is opposite to its initial direction when it strikes the ground. So, we can calculate the net change in momentum as
Since ,
Which can be simplified to
Note: Here we have assumed that the ball will not lose its energy when it collides with the ground. In reality, there will always be a loss of energy when the ball collides with the ground and hence its velocity will be lower than the initial velocity it had when striking the ground.
Complete step by step answer:
We’ve been told a projectile is launched at an angle of
However, the perpendicular component of the velocity will be downwards since the ball will be approaching the ground. If the projectile of the velocity is denoted by
Now when the ball strikes the ground it will bounce back up. But this time, it will have a perpendicular velocity in the upwards direction that is opposite to its initial direction when it strikes the ground. So, we can calculate the net change in momentum as
Since
Which can be simplified to
Note: Here we have assumed that the ball will not lose its energy when it collides with the ground. In reality, there will always be a loss of energy when the ball collides with the ground and hence its velocity will be lower than the initial velocity it had when striking the ground.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
EMI starts from ₹3,487.34 per month
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
