
A body is thrown vertically upward in air and air resistance is taken into account. The time of ascent is ${t_1}$ and time of descent is ${t_2}$, then which of the following is true
(A) ${t_1} = {t_2}$
(B) ${t_1} > {t_2}$
(C) ${t_1} < {t_2}$
(D) Cannot be predicted
Answer
216.3k+ views
Hint:In order to solve this question, we should know that air resistance force always acts in a direction opposite to that of direction of motion of the body, so here we will find effective acceleration of body in both cases and then using newton’s equation of motion to find relation between time of ascent and time of descent.
Formula used:
$v = u + at$
${v^2} - {u^2} = 2aS$
$S = ut + \dfrac{1}{2}a{t^2}$
where,
v is the final velocity, u is the initial velocity of the body
S is the distance covered, a is the acceleration of the body and t denotes time taken by the body.
Complete answer:
Let us assume the acceleration due to air resistance force is ‘a’ and acceleration due to gravity is ‘g’ and total height reached by the body is H, during ascent and descent of the particle the net acceleration acting on the particle is shown in the diagram as

Now, During ascent time taken by the body to rise with initial velocity u and net acceleration ${a_{net}} = g + a$ is
using equation $v = u + at$ as final velocity during ascent is zero and net acceleration will be taken as negative so ${t_1} = \dfrac{u}{{g + a}}$ and height H reached by the body can be calculated using ${v^2} - {u^2} = 2aS$ we get
$
{u^2} = 2(g + a)H \\
\Rightarrow H = \dfrac{{{u^2}}}{{2(g + a)}} \to (i) \\
$
Now, during the descent the distance covered by the body will be H with acceleration $a{'_{net}} = g - a$ with time ${t_2}$ so using newton’s equation of motion as
$S = ut + \dfrac{1}{2}a{t^2}$ and since initial velocity is zero during descent so we get,
$H = \dfrac{1}{2}(g - a){t_2}^2$ using the value of H from equation (i) we get,
$
\dfrac{{{u^2}}}{{2(g + a)}} = \dfrac{1}{2}(g - a){t_2}^2 \\
{t_2} = \dfrac{u}{{g + a}}\sqrt {\dfrac{{g + a}}{{g - a}}} \\
$
using the value ${t_1} = \dfrac{u}{{g + a}}$ we get,
${t_2} = {t_1}\sqrt {\dfrac{{g + a}}{{g - a}}} $
now since, we know that $\dfrac{{g + a}}{{g - a}} > 1$ so,
${t_2} > {t_1}$ or ${t_1} < {t_2}$
So, the time of descent will be larger than the time of ascent.
Hence, the correct answer is ${t_1} > {t_2}$
Hence, the correct option is Option (B).
Note:Always pay attention while calculating the acceleration values during ascent and descent. Also consider the effect of gravity on the motion of the body during ascent and descent.
Formula used:
$v = u + at$
${v^2} - {u^2} = 2aS$
$S = ut + \dfrac{1}{2}a{t^2}$
where,
v is the final velocity, u is the initial velocity of the body
S is the distance covered, a is the acceleration of the body and t denotes time taken by the body.
Complete answer:
Let us assume the acceleration due to air resistance force is ‘a’ and acceleration due to gravity is ‘g’ and total height reached by the body is H, during ascent and descent of the particle the net acceleration acting on the particle is shown in the diagram as

Now, During ascent time taken by the body to rise with initial velocity u and net acceleration ${a_{net}} = g + a$ is
using equation $v = u + at$ as final velocity during ascent is zero and net acceleration will be taken as negative so ${t_1} = \dfrac{u}{{g + a}}$ and height H reached by the body can be calculated using ${v^2} - {u^2} = 2aS$ we get
$
{u^2} = 2(g + a)H \\
\Rightarrow H = \dfrac{{{u^2}}}{{2(g + a)}} \to (i) \\
$
Now, during the descent the distance covered by the body will be H with acceleration $a{'_{net}} = g - a$ with time ${t_2}$ so using newton’s equation of motion as
$S = ut + \dfrac{1}{2}a{t^2}$ and since initial velocity is zero during descent so we get,
$H = \dfrac{1}{2}(g - a){t_2}^2$ using the value of H from equation (i) we get,
$
\dfrac{{{u^2}}}{{2(g + a)}} = \dfrac{1}{2}(g - a){t_2}^2 \\
{t_2} = \dfrac{u}{{g + a}}\sqrt {\dfrac{{g + a}}{{g - a}}} \\
$
using the value ${t_1} = \dfrac{u}{{g + a}}$ we get,
${t_2} = {t_1}\sqrt {\dfrac{{g + a}}{{g - a}}} $
now since, we know that $\dfrac{{g + a}}{{g - a}} > 1$ so,
${t_2} > {t_1}$ or ${t_1} < {t_2}$
So, the time of descent will be larger than the time of ascent.
Hence, the correct answer is ${t_1} > {t_2}$
Hence, the correct option is Option (B).
Note:Always pay attention while calculating the acceleration values during ascent and descent. Also consider the effect of gravity on the motion of the body during ascent and descent.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

