
A body is projected horizontally from a point above the ground and motion of the body is described by the equation $x = 2t$, $y = 5{t^2}$ where $x$, and $y$ are horizontal and vertical coordinates in meter after time $t$. The initial velocity of the body will be
A) $\sqrt {29} m/s$ horizontal
B) $5m/s$ horizontal
C) $2m/s$ vertical
D) $2m/s$ horizontal
Answer
175.2k+ views
Hint: Here we are given with a projected body and asked with the initial velocity of it. The coordinates of movement in both $x$ and $y$ coordinates are given. So it is worth thinking that initially when the projectile body starts moving it moves in the horizontal direction. So, the velocity would also be horizontal. Now, use the concept of differentiation in order to get the magnitude of velocity and your question will be solved.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the $x$ - coordinates we have, $2m{s^{ - 1}}$
${v_i} = \dfrac{{dx}}{{dt}}$
Putting $x = 2t$ we have,
${v_i} = \dfrac{{d(2t)}}{{dt}}$
On simplifying we have,
${v_i} = 2\dfrac{{dt}}{{dt}}$
As we know that, $\dfrac{{dt}}{{dt}} = 1$
So we have, ${v_i} = 2m{s^{ - 1}}$
So, the initial velocity is $2m{s^{ - 1}}$.
This initial velocity is in horizontal direction so the correct option here is option D that is $2m{s^{ - 1}}$ horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain $2m{s^{ - 1}}$ for the horizontal velocity throughout the journey.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the $x$ - coordinates we have, $2m{s^{ - 1}}$
${v_i} = \dfrac{{dx}}{{dt}}$
Putting $x = 2t$ we have,
${v_i} = \dfrac{{d(2t)}}{{dt}}$
On simplifying we have,
${v_i} = 2\dfrac{{dt}}{{dt}}$
As we know that, $\dfrac{{dt}}{{dt}} = 1$
So we have, ${v_i} = 2m{s^{ - 1}}$
So, the initial velocity is $2m{s^{ - 1}}$.
This initial velocity is in horizontal direction so the correct option here is option D that is $2m{s^{ - 1}}$ horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain $2m{s^{ - 1}}$ for the horizontal velocity throughout the journey.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
