
A body is projected horizontally from a point above the ground and motion of the body is described by the equation , where , and are horizontal and vertical coordinates in meter after time . The initial velocity of the body will be
A) horizontal
B) horizontal
C) vertical
D) horizontal
Answer
139.8k+ views
Hint: Here we are given with a projected body and asked with the initial velocity of it. The coordinates of movement in both and coordinates are given. So it is worth thinking that initially when the projectile body starts moving it moves in the horizontal direction. So, the velocity would also be horizontal. Now, use the concept of differentiation in order to get the magnitude of velocity and your question will be solved.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the - coordinates we have,
Putting we have,
On simplifying we have,
As we know that,
So we have,
So, the initial velocity is .
This initial velocity is in horizontal direction so the correct option here is option D that is horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain for the horizontal velocity throughout the journey.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the
Putting
On simplifying we have,
As we know that,
So we have,
So, the initial velocity is
This initial velocity is in horizontal direction so the correct option here is option D that is
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
