
A body is projected horizontally from a point above the ground and motion of the body is described by the equation $x = 2t$, $y = 5{t^2}$ where $x$, and $y$ are horizontal and vertical coordinates in meter after time $t$. The initial velocity of the body will be
A) $\sqrt {29} m/s$ horizontal
B) $5m/s$ horizontal
C) $2m/s$ vertical
D) $2m/s$ horizontal
Answer
123.6k+ views
Hint: Here we are given with a projected body and asked with the initial velocity of it. The coordinates of movement in both $x$ and $y$ coordinates are given. So it is worth thinking that initially when the projectile body starts moving it moves in the horizontal direction. So, the velocity would also be horizontal. Now, use the concept of differentiation in order to get the magnitude of velocity and your question will be solved.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the $x$ - coordinates we have, $2m{s^{ - 1}}$
${v_i} = \dfrac{{dx}}{{dt}}$
Putting $x = 2t$ we have,
${v_i} = \dfrac{{d(2t)}}{{dt}}$
On simplifying we have,
${v_i} = 2\dfrac{{dt}}{{dt}}$
As we know that, $\dfrac{{dt}}{{dt}} = 1$
So we have, ${v_i} = 2m{s^{ - 1}}$
So, the initial velocity is $2m{s^{ - 1}}$.
This initial velocity is in horizontal direction so the correct option here is option D that is $2m{s^{ - 1}}$ horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain $2m{s^{ - 1}}$ for the horizontal velocity throughout the journey.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the $x$ - coordinates we have, $2m{s^{ - 1}}$
${v_i} = \dfrac{{dx}}{{dt}}$
Putting $x = 2t$ we have,
${v_i} = \dfrac{{d(2t)}}{{dt}}$
On simplifying we have,
${v_i} = 2\dfrac{{dt}}{{dt}}$
As we know that, $\dfrac{{dt}}{{dt}} = 1$
So we have, ${v_i} = 2m{s^{ - 1}}$
So, the initial velocity is $2m{s^{ - 1}}$.
This initial velocity is in horizontal direction so the correct option here is option D that is $2m{s^{ - 1}}$ horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain $2m{s^{ - 1}}$ for the horizontal velocity throughout the journey.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Find the acceleration of the wedge towards the right class 11 physics JEE_Main

A standing wave is formed by the superposition of two class 11 physics JEE_Main

Derive an expression for work done by the gas in an class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
