Answer

Verified

62.1k+ views

**Hint:**

DETERMINANT OF A 3 X 3 MATRIX

The determinant of a 3 x 3 matrix A,

$A = \left( {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right)$

is defined as

$A = \left( {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right) = ({a_{11}}{a_{22}}{a_{33}} + {a_{12}}{a_{23}}{a_{31}} + {a_{13}}{a_{21}}{a_{32}}) - ({a_{31}}{a_{22}}{a_{13}} + {a_{32}}{a_{23}}{a_{11}} + {a_{33}}{a_{21}}{a_{12}})$

An easy method for calculating 3 X 3 determinants is found by rearranging and factoring the terms given above to get

\[A = \left( {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right) = {a_{11}}({a_{22}}{a_{33}} - {a_{32}}{a_{23}}) - {a_{21}}({a_{33}}{a_{12}} - {a_{13}}{a_{32}}) + {a_{31}}({a_{12}}{a_{23}} - {a_{22}}{a_{13}})\]

Complete step by step solution: -

We'll start with a 3 x 3 matrix A, and try to find its determinant |A|.

Hence, $A = \left( {\begin{array}{*{20}{c}}

{{b^2}{c^2}}&{bc}&{b + c} \\

{{c^2}{a^2}}&{ca}&{c + a} \\

{{a^2}{b^2}}&{ab}&{a + b}

\end{array}} \right)$

Use row subtraction to make the matrix easier. If you take the values of one row and subtract them to a different row, the determinant of the matrix does not change. The same is true of columns. You can do this repeatedly — or multiply the values by a consonant before adding — to get as many zeros in the matrix as possible. This can save you a lot of time.

\[{R_1} \to {R_1} - {R_{3}},{R_{2}} \to {R_2} - {R_3}\]

\[ \Rightarrow A = \left( {\begin{array}{*{20}{c}}

{{b^2}{c^2} - {a^2}{b^2}}&{bc - ab}&{c - a} \\

{{c^2}{a^2} - {a^2}{b^2}}&{ca - ab}&{c - b} \\

{{a^2}{b^2}}&{ab}&{a + b}

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

{{b^2}\left( {c - a} \right)\left( {c + a} \right)}&{b\left( {c - a} \right)}&{c - a} \\

{{a^2}\left( {c - b} \right)\left( {c + b} \right)}&{a\left( {c - b} \right)}&{c - b} \\

{{a^2}{b^2}}&{ab}&{a + b}

\end{array}} \right)\]

Taking $(c - a)$common from $R_1$ and $(c - b)$common from $R_2$.

\[ \Rightarrow A = \left( {c - a} \right)\left( {c - b} \right)\left( {\begin{array}{*{20}{c}}

{{b^2}\left( {c + a} \right)}&b&1 \\

{{a^2}\left( {c + b} \right)}&a&1 \\

{{a^2}{b^2}}&{ab}&{a + b}

\end{array}} \right)\]

Expand along ${R_3}$

\[ \Rightarrow A = \left( {c - a} \right)\left( {c - b} \right)\left\{ {\left( {{b^2}\left( {c + a} \right)} \right)\left( {a\left( {a + b} \right) - ab} \right) - \left( {{a^2}\left( {c + b} \right)} \right)\left( {\left( {a + b} \right)b - ab} \right) + {a^2}{b^2}\left( {b - a} \right)} \right\}\]

\[ \Rightarrow A = \left( {c - a} \right)\left( {c - b} \right)\left\{ {\left( {{b^2}{a^2}\left( {c + a} \right)} \right) - \left( {{a^2}{b^2}\left( {c + b} \right)} \right) + {a^2}{b^2}\left( {b - a} \right)} \right\}\]

\[ \Rightarrow A = \left( {c - a} \right)\left( {c - b} \right)\left\{ {{b^2}{a^2}c + {b^2}{a^3} - {a^2}{b^2}c - {a^2}{b^3} + {a^2}{b^3} - {a^3}{b^2}} \right\}\]

\[ \Rightarrow A = \left( {c - a} \right)\left( {c - b} \right)\left\{ {{b^2}{a^2}c - {a^2}{b^2}c} \right\} = 0\]

The process is called an expansion of the first row because as you can see in the equation, all of the elements from the first row of the original 3x3 matrix remain as main factors in the expansion to be solved for. All of the 2x2 matrices in the expansion are what we call "secondary matrices", and they can be easily resolved using the equation on the determinant of a 2x2 matrix.

**So, option (D) is the correct answer.**

**Note:**Be very careful when substituting the values into the right places in the formula and to keep track of all negative signs when evaluating determinants. Common errors occur when students become careless during the initial step of substitution of values. Work carefully, writing down each step as in the examples. Skipping steps frequently leads to errors in these computations.

In addition, take your time to make sure your arithmetic is also correct. Otherwise, a single error somewhere in the calculation will yield a wrong answer in the end.

Exactly the same answer would be found using any row or column of the matrix.

Recently Updated Pages

Write a composition in approximately 450 500 words class 10 english JEE_Main

Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main

What is the common property of the oxides CONO and class 10 chemistry JEE_Main

What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main

If four points A63B 35C4 2 and Dx3x are given in such class 10 maths JEE_Main

The area of square inscribed in a circle of diameter class 10 maths JEE_Main

Other Pages

Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main

Choose the correct statements A A dimensionally correct class 11 physics JEE_Main

Find the magnetic field at P due to arrangement as class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Which is the correct statement As the scharacter of class 11 chemistry JEE_Main