
$200cal$ of heat is given to a heat engine so that it rejects $150cal$ of heat, if source temperature is $400K$, then the sink temperature is
(A) $300K$
(B) $200K$
(C) $100K$
(D) $50K$
Answer
161.1k+ views
Hint: In order to solve this question, we will first find the efficiency of the engine in terms of source heat and rejected heat using general formula and then will compare the efficiency of the engine in terms of source and sink temperature and thus we will solve for the sink temperature value.
Formula used:
1. Efficiency of an engine in terms of heat energy is calculated as:
\[\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}\]
where \[{Q_1},{Q_2}\] are the heat given, heat rejected by the engine.
2. Efficiency of an engine in terms of source and sink temperature is calculated as:
\[\eta = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}\]
where \[{T_1},{T_2}\] are the source temperature and sink temperature.
Complete answer:
According to the question, we have given that for an heat engine energy is given ${Q_1} = 200cal$ and heat rejected is given by ${Q_2} = 150cal$
The efficiency of the engine is given by:
\[\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}\]
on Substituting the known values we get
\[
\eta = \dfrac{{200 - 150}}{{200}} \\
\eta = \dfrac{1}{4} \to (i) \\
\]
Now, let us find the efficiency of the engine in terms of temperature where we have given that temperature of source is ${T_1} = 400K$
let sink temperature is ${T_2}$ then efficiency is given by:
\[\eta = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}\]
on putting the values we get, also put value of efficiency from equation (i)
\[
\dfrac{1}{4} = \dfrac{{400 - {T_2}}}{{400}} \\
{T_2} = 300K \\
\]
Hence, the correct answer is option (A) $300K$.
Note: It should be noted that no heat engine in hundred percent efficient means it’s never possible that the amount of energy given to the engine is converted into work completely, there is always a loss in energy.
Formula used:
1. Efficiency of an engine in terms of heat energy is calculated as:
\[\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}\]
where \[{Q_1},{Q_2}\] are the heat given, heat rejected by the engine.
2. Efficiency of an engine in terms of source and sink temperature is calculated as:
\[\eta = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}\]
where \[{T_1},{T_2}\] are the source temperature and sink temperature.
Complete answer:
According to the question, we have given that for an heat engine energy is given ${Q_1} = 200cal$ and heat rejected is given by ${Q_2} = 150cal$
The efficiency of the engine is given by:
\[\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}\]
on Substituting the known values we get
\[
\eta = \dfrac{{200 - 150}}{{200}} \\
\eta = \dfrac{1}{4} \to (i) \\
\]
Now, let us find the efficiency of the engine in terms of temperature where we have given that temperature of source is ${T_1} = 400K$
let sink temperature is ${T_2}$ then efficiency is given by:
\[\eta = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}\]
on putting the values we get, also put value of efficiency from equation (i)
\[
\dfrac{1}{4} = \dfrac{{400 - {T_2}}}{{400}} \\
{T_2} = 300K \\
\]
Hence, the correct answer is option (A) $300K$.
Note: It should be noted that no heat engine in hundred percent efficient means it’s never possible that the amount of energy given to the engine is converted into work completely, there is always a loss in energy.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
