
What is the value of the integral \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]?
A. \[\dfrac{{{\pi ^2}}}{4}\]
B. \[\dfrac{{{\pi ^2}}}{2}\]
C. \[\dfrac{{3{\pi ^2}}}{2}\]
D. \[\dfrac{{{\pi ^2}}}{3}\]
Answer
216.6k+ views
Hint: Here, a definite integral is given. First, apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] and rewrite the given integral. Then, add both integrals and simplify it. After that, solve the right-hand side by using the basic trigonometric ratios. Then, substitute \[\cos x = u\] in the given integral and calculate the new values of the upper and lower limits. Simplify the integral by applying the integral property \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]. In the end, solve apply the upper and lower limit of the integration and solve it to get the required answer.
Formula Used: Properties of definite integral:
\[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]
\[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \]
Trigonometric ratios:
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Integration Formula: \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\] , where \[a\] is a constant.
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \].
Let consider,
\[I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]
Apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] on the right-hand side.
We get,
\[I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \cos \left( {\pi - x} \right)}} dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
Now add above equation with the given equation.
\[2I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{x\tan x}}{{\sec x + \cos x}} + \dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{\left( {x + \pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
Rewrite the right-hand side by using the basic trigonometric ratios.
\[I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{1 + {{\cos }^2}x}}{{\cos x}}}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}} dx} \] \[.....\left( 1 \right)\]
Now substitute \[\cos x = u\] in the above equation.
Differentiate the substituting equation, we get
\[ - \sin xdx = du\]
\[ \Rightarrow \sin xdx = - du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 1\] and \[x = \pi \Rightarrow u = - 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[I = \dfrac{\pi }{2}\int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}} \]
Apply the property of definite integral \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \] on the right-hand side.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \]
Solve the integral by using the standard integral formula \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\].
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}u} \right]_{ - 1}^1\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} - \left( { - \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} + \dfrac{\pi }{4}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
Therefore,
\[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} = \dfrac{{{\pi ^2}}}{4}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: Properties of definite integral:
\[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \]
\[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \]
Trigonometric ratios:
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\sec x = \dfrac{1}{{\cos x}}\]
Integration Formula: \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\] , where \[a\] is a constant.
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \].
Let consider,
\[I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} \]
Apply the property of the definite integral \[\int\limits_0^a {f\left( x \right) dx} = \int\limits_0^a {f\left( {a - x} \right) dx} \] on the right-hand side.
We get,
\[I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan \left( {\pi - x} \right)}}{{\sec \left( {\pi - x} \right) + \cos \left( {\pi - x} \right)}} dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
Now add above equation with the given equation.
\[2I = \int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{x\tan x}}{{\sec x + \cos x}} + \dfrac{{\left( {\pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left[ {\dfrac{{\left( {x + \pi - x} \right)\tan x}}{{\sec x + \cos x}}} \right] dx} \]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\tan x}}{{\sec x + \cos x}} dx} \]
Rewrite the right-hand side by using the basic trigonometric ratios.
\[I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} + \cos x}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{1 + {{\cos }^2}x}}{{\cos x}}}} dx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}} dx} \] \[.....\left( 1 \right)\]
Now substitute \[\cos x = u\] in the above equation.
Differentiate the substituting equation, we get
\[ - \sin xdx = du\]
\[ \Rightarrow \sin xdx = - du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 1\] and \[x = \pi \Rightarrow u = - 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[I = \dfrac{\pi }{2}\int\limits_1^{ - 1} {\dfrac{{ - du}}{{1 + {u^2}}}} \]
Apply the property of definite integral \[\int\limits_b^a {f\left( x \right) dx} = - \int\limits_a^b {f\left( x \right) dx} \] on the right-hand side.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{ - 1}^1 {\dfrac{{du}}{{1 + {u^2}}}} \]
Solve the integral by using the standard integral formula \[\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}} {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\].
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}u} \right]_{ - 1}^1\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} - \left( { - \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{4} + \dfrac{\pi }{4}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\dfrac{\pi }{2}} \right]\]
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{4}\]
Therefore,
\[\int\limits_0^\pi {\dfrac{{x\tan x}}{{\sec x + \cos x}} dx} = \dfrac{{{\pi ^2}}}{4}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

