
What is the value of the integral \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]?
A. \[\dfrac{3}{2}\]
B. \[ - \dfrac{8}{3}\]
C. \[\dfrac{3}{8}\]
D. \[\dfrac{8}{3}\]
Answer
162.3k+ views
Hint: Here, a definite integral is given. First, rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\]. Then, multiply the numerator and the denominator by \[{\cos ^4}x\] and simplify the integral. Then, simplify the integral by using the trigonometric ratios. After that, apply the integration rule for the limit of the integral \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. Then simplify the numerator by using the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]. Now, substitute \[\tan x = u\] in the given integral and solve it by using the integration formulas. In the end, apply the upper and lower limit of the integration and solve it to get the required answer.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\], if \[f\left( x \right)\] is an even function
\[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{{\sin x}}{{\cos x}} = \tan x = \dfrac{1}{{\cot x}}\]
\[1 + {\tan ^2}x = {\sec ^2}x\]
\[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \]
Complete step by step solution: The given integral is \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]
Let’s simplify the above integral.
Rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\sin }^4}x}} dx} \]
Now multiply the numerator and the denominator of the right-hand side by \[{\cos ^4}x\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\cos }^4}x}}{{{{\sin }^4}x}} \times \dfrac{1}{{{{\cos }^4}x}}} \right] dx} \]
Simplify the above integral by using the basic trigonometric ratios.
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\tan }^4}x}}{{\sec }^4}x} \right] dx} \]
Now apply the integration rule for the limit.
\[I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x}}} \right] dx} \]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {{{\sec }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \]
Apply the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {1 + {{\tan }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \] \[.....\left( 1 \right)\]
Now substitute \[\tan x = u\] in the above equation.
Differentiate the substituting equation, we get
\[{\sec ^2}xdx = du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 0\] and \[x = \dfrac{\pi }{4} \Rightarrow u = 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{1 + {u^2}}}{{{u^4}}} du} \]
Simplify the right-hand side.
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {\dfrac{1}{{{u^4}}} + \dfrac{1}{{{u^2}}}} \right] du} \]
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {{u^{ - 4}} + {u^{ - 2}}} \right] du} \]
Apply the addition rule of integration.
\[ \Rightarrow I = 2\left[ {\int\limits_0^1 {{u^{ - 4}} du} + \int\limits_0^1 {{u^{ - 2}} du} } \right]\]
Solve both integrals by using the rule \[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \].
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 4 + 1}}}}{{ - 4 + 1}} + \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 3}}}}{{ - 3}} + \dfrac{{{u^{ - 1}}}}{{ - 1}}} \right]_0^1\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{u^3}}}} \right|_0^1 + \left| {\dfrac{1}{u}} \right|_0^1} \right]\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{{\left( 1 \right)}^3}}} - \dfrac{1}{{3{{\left( 0 \right)}^3}}}} \right| + \left| {\dfrac{1}{1} - \dfrac{1}{0}} \right|} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{1}{3} + 1} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{4}{3}} \right]\]
\[ \Rightarrow I = - \dfrac{8}{3}\]
Therefore,
\[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} = - \dfrac{8}{3}\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\], if \[f\left( x \right)\] is an even function
\[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{{\sin x}}{{\cos x}} = \tan x = \dfrac{1}{{\cot x}}\]
\[1 + {\tan ^2}x = {\sec ^2}x\]
\[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \]
Complete step by step solution: The given integral is \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]
Let’s simplify the above integral.
Rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\sin }^4}x}} dx} \]
Now multiply the numerator and the denominator of the right-hand side by \[{\cos ^4}x\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\cos }^4}x}}{{{{\sin }^4}x}} \times \dfrac{1}{{{{\cos }^4}x}}} \right] dx} \]
Simplify the above integral by using the basic trigonometric ratios.
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\tan }^4}x}}{{\sec }^4}x} \right] dx} \]
Now apply the integration rule for the limit.
\[I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x}}} \right] dx} \]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {{{\sec }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \]
Apply the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {1 + {{\tan }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \] \[.....\left( 1 \right)\]
Now substitute \[\tan x = u\] in the above equation.
Differentiate the substituting equation, we get
\[{\sec ^2}xdx = du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 0\] and \[x = \dfrac{\pi }{4} \Rightarrow u = 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{1 + {u^2}}}{{{u^4}}} du} \]
Simplify the right-hand side.
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {\dfrac{1}{{{u^4}}} + \dfrac{1}{{{u^2}}}} \right] du} \]
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {{u^{ - 4}} + {u^{ - 2}}} \right] du} \]
Apply the addition rule of integration.
\[ \Rightarrow I = 2\left[ {\int\limits_0^1 {{u^{ - 4}} du} + \int\limits_0^1 {{u^{ - 2}} du} } \right]\]
Solve both integrals by using the rule \[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \].
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 4 + 1}}}}{{ - 4 + 1}} + \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 3}}}}{{ - 3}} + \dfrac{{{u^{ - 1}}}}{{ - 1}}} \right]_0^1\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{u^3}}}} \right|_0^1 + \left| {\dfrac{1}{u}} \right|_0^1} \right]\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{{\left( 1 \right)}^3}}} - \dfrac{1}{{3{{\left( 0 \right)}^3}}}} \right| + \left| {\dfrac{1}{1} - \dfrac{1}{0}} \right|} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{1}{3} + 1} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{4}{3}} \right]\]
\[ \Rightarrow I = - \dfrac{8}{3}\]
Therefore,
\[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} = - \dfrac{8}{3}\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced Study Plan 2025: Expert Tips and Preparation Guide

JEE Advanced 2022 Physics Question Paper 2 with Solutions

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2025 Surface Chemistry Revision Notes - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
