
What is the value of the integral \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]?
A. \[\dfrac{3}{2}\]
B. \[ - \dfrac{8}{3}\]
C. \[\dfrac{3}{8}\]
D. \[\dfrac{8}{3}\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\]. Then, multiply the numerator and the denominator by \[{\cos ^4}x\] and simplify the integral. Then, simplify the integral by using the trigonometric ratios. After that, apply the integration rule for the limit of the integral \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. Then simplify the numerator by using the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]. Now, substitute \[\tan x = u\] in the given integral and solve it by using the integration formulas. In the end, apply the upper and lower limit of the integration and solve it to get the required answer.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\], if \[f\left( x \right)\] is an even function
\[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{{\sin x}}{{\cos x}} = \tan x = \dfrac{1}{{\cot x}}\]
\[1 + {\tan ^2}x = {\sec ^2}x\]
\[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \]
Complete step by step solution: The given integral is \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]
Let’s simplify the above integral.
Rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\sin }^4}x}} dx} \]
Now multiply the numerator and the denominator of the right-hand side by \[{\cos ^4}x\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\cos }^4}x}}{{{{\sin }^4}x}} \times \dfrac{1}{{{{\cos }^4}x}}} \right] dx} \]
Simplify the above integral by using the basic trigonometric ratios.
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\tan }^4}x}}{{\sec }^4}x} \right] dx} \]
Now apply the integration rule for the limit.
\[I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x}}} \right] dx} \]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {{{\sec }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \]
Apply the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {1 + {{\tan }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \] \[.....\left( 1 \right)\]
Now substitute \[\tan x = u\] in the above equation.
Differentiate the substituting equation, we get
\[{\sec ^2}xdx = du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 0\] and \[x = \dfrac{\pi }{4} \Rightarrow u = 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{1 + {u^2}}}{{{u^4}}} du} \]
Simplify the right-hand side.
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {\dfrac{1}{{{u^4}}} + \dfrac{1}{{{u^2}}}} \right] du} \]
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {{u^{ - 4}} + {u^{ - 2}}} \right] du} \]
Apply the addition rule of integration.
\[ \Rightarrow I = 2\left[ {\int\limits_0^1 {{u^{ - 4}} du} + \int\limits_0^1 {{u^{ - 2}} du} } \right]\]
Solve both integrals by using the rule \[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \].
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 4 + 1}}}}{{ - 4 + 1}} + \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 3}}}}{{ - 3}} + \dfrac{{{u^{ - 1}}}}{{ - 1}}} \right]_0^1\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{u^3}}}} \right|_0^1 + \left| {\dfrac{1}{u}} \right|_0^1} \right]\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{{\left( 1 \right)}^3}}} - \dfrac{1}{{3{{\left( 0 \right)}^3}}}} \right| + \left| {\dfrac{1}{1} - \dfrac{1}{0}} \right|} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{1}{3} + 1} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{4}{3}} \right]\]
\[ \Rightarrow I = - \dfrac{8}{3}\]
Therefore,
\[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} = - \dfrac{8}{3}\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\], if \[f\left( x \right)\] is an even function
\[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{{\sin x}}{{\cos x}} = \tan x = \dfrac{1}{{\cot x}}\]
\[1 + {\tan ^2}x = {\sec ^2}x\]
\[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \]
Complete step by step solution: The given integral is \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]
Let’s simplify the above integral.
Rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\sin }^4}x}} dx} \]
Now multiply the numerator and the denominator of the right-hand side by \[{\cos ^4}x\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\cos }^4}x}}{{{{\sin }^4}x}} \times \dfrac{1}{{{{\cos }^4}x}}} \right] dx} \]
Simplify the above integral by using the basic trigonometric ratios.
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\tan }^4}x}}{{\sec }^4}x} \right] dx} \]
Now apply the integration rule for the limit.
\[I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x}}} \right] dx} \]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {{{\sec }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \]
Apply the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {1 + {{\tan }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \] \[.....\left( 1 \right)\]
Now substitute \[\tan x = u\] in the above equation.
Differentiate the substituting equation, we get
\[{\sec ^2}xdx = du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 0\] and \[x = \dfrac{\pi }{4} \Rightarrow u = 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{1 + {u^2}}}{{{u^4}}} du} \]
Simplify the right-hand side.
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {\dfrac{1}{{{u^4}}} + \dfrac{1}{{{u^2}}}} \right] du} \]
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {{u^{ - 4}} + {u^{ - 2}}} \right] du} \]
Apply the addition rule of integration.
\[ \Rightarrow I = 2\left[ {\int\limits_0^1 {{u^{ - 4}} du} + \int\limits_0^1 {{u^{ - 2}} du} } \right]\]
Solve both integrals by using the rule \[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \].
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 4 + 1}}}}{{ - 4 + 1}} + \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 3}}}}{{ - 3}} + \dfrac{{{u^{ - 1}}}}{{ - 1}}} \right]_0^1\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{u^3}}}} \right|_0^1 + \left| {\dfrac{1}{u}} \right|_0^1} \right]\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{{\left( 1 \right)}^3}}} - \dfrac{1}{{3{{\left( 0 \right)}^3}}}} \right| + \left| {\dfrac{1}{1} - \dfrac{1}{0}} \right|} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{1}{3} + 1} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{4}{3}} \right]\]
\[ \Rightarrow I = - \dfrac{8}{3}\]
Therefore,
\[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} = - \dfrac{8}{3}\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

