
What is the value of the integral \[\int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\]?
A. \[\log\left| {\sec x + \tan x} \right| + C\]
B. \[\log\left| {\sec x + \csc x} \right| + C\]
C. \[\dfrac{1}{2}\log\left| {\sec 2x + \tan 2x} \right| + C\]
D. \[\log\left| {\sec 2x + \csc 2x} \right| + C\]
E. \[\log\left| {\sec 2x \cdot \csc 2x} \right| + C\]
Answer
216.6k+ views
Hint First, simplify \[\int {\left\{ {\dfrac{{\left( {\sec x - \csc x} \right)}}{{2\cot x - \sec x - \csc x}}} \right\}} dx\] by putting \[\sec x = \dfrac{1}{{\cos x}}\] , \[\csc x = \dfrac{1}{{\sin x}}\], \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]. Then apply the formula \[2{\cos ^2}x - 1 = \cos 2x\]. After that, substitute \[2x = u\] and derivative it. Then rewrite the integration in terms of \[u\]. Then apply integration formula \[\int {\sec xdx = \log \left| {\sec x + \tan x} \right| + C} \] and substitute \[u = 2x\].
Formula used
Trigonometric ratios:
\[\sec x = \dfrac{1}{{\cos x}}\]
\[\csc x = \dfrac{1}{{\sin x}}\]
\[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[\cos 2x = 2\cos^{2} x - 1\]
\[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\]
Complete step by step solution:
The given integral is \[\int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\].
Let consider,
\[I = \int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\]
Let’s simplify the right-hand side of the above equation using the trigonometric ratios.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}} \right\}} dx\]
Simplify the above integral.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Now multiply the numerator and denominator of the first term in denominator by \[\cos x\].
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x}}{{\sin x \cos x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x - 1}}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Cancel out the common terms.
\[I = \int {\left\{ {\dfrac{1}{{2\cos^{2}x - 1}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\cos\left( {2x} \right)}}} dx\] [ Since \[\cos 2x = 2\cos^{2}x - 1\]]
\[ \Rightarrow \]\[I = \int {\sec\left( {2x} \right)} dx\] [ Since \[\sec x = \dfrac{1}{{\cos x}}\]]
Apply the substitution method of integration.
Substitute \[2x = u\] in the above integral.
Differentiate \[2x = u\] with respect to \[x\].
\[2 = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[2dx = du\]
Then,
\[I = \int {\sec\left( u \right)} \dfrac{{du}}{2}\]
Simplify the above integral.
\[I = \dfrac{1}{2}\int {\sec\left( u \right)} du\]
Now apply the standard integral formula \[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\].
Integrate with respect to \[u\].
\[I = \dfrac{1}{2}\left[ {\log\left| {\sec u + \tan u} \right| + C} \right]\]
\[ \Rightarrow \]\[I = \dfrac{1}{2}\log\left| {\sec u + \tan u} \right| + C\]
Resubstitute the value of \[u\].
\[I = \dfrac{1}{2}log\left| {\sec 2x + \tan 2x} \right| + C\]
Hence the correct option is C.
Note: Students are often forgot to put \[u = 2x\] at the end of the solution. They marked option A is correct. But the correct option is option C.
Formula used
Trigonometric ratios:
\[\sec x = \dfrac{1}{{\cos x}}\]
\[\csc x = \dfrac{1}{{\sin x}}\]
\[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[\cos 2x = 2\cos^{2} x - 1\]
\[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\]
Complete step by step solution:
The given integral is \[\int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\].
Let consider,
\[I = \int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\]
Let’s simplify the right-hand side of the above equation using the trigonometric ratios.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}} \right\}} dx\]
Simplify the above integral.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Now multiply the numerator and denominator of the first term in denominator by \[\cos x\].
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x}}{{\sin x \cos x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x - 1}}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Cancel out the common terms.
\[I = \int {\left\{ {\dfrac{1}{{2\cos^{2}x - 1}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\cos\left( {2x} \right)}}} dx\] [ Since \[\cos 2x = 2\cos^{2}x - 1\]]
\[ \Rightarrow \]\[I = \int {\sec\left( {2x} \right)} dx\] [ Since \[\sec x = \dfrac{1}{{\cos x}}\]]
Apply the substitution method of integration.
Substitute \[2x = u\] in the above integral.
Differentiate \[2x = u\] with respect to \[x\].
\[2 = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[2dx = du\]
Then,
\[I = \int {\sec\left( u \right)} \dfrac{{du}}{2}\]
Simplify the above integral.
\[I = \dfrac{1}{2}\int {\sec\left( u \right)} du\]
Now apply the standard integral formula \[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\].
Integrate with respect to \[u\].
\[I = \dfrac{1}{2}\left[ {\log\left| {\sec u + \tan u} \right| + C} \right]\]
\[ \Rightarrow \]\[I = \dfrac{1}{2}\log\left| {\sec u + \tan u} \right| + C\]
Resubstitute the value of \[u\].
\[I = \dfrac{1}{2}log\left| {\sec 2x + \tan 2x} \right| + C\]
Hence the correct option is C.
Note: Students are often forgot to put \[u = 2x\] at the end of the solution. They marked option A is correct. But the correct option is option C.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

