
What is the value of the integral \[\int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\]?
A. \[\log\left| {\sec x + \tan x} \right| + C\]
B. \[\log\left| {\sec x + \csc x} \right| + C\]
C. \[\dfrac{1}{2}\log\left| {\sec 2x + \tan 2x} \right| + C\]
D. \[\log\left| {\sec 2x + \csc 2x} \right| + C\]
E. \[\log\left| {\sec 2x \cdot \csc 2x} \right| + C\]
Answer
160.8k+ views
Hint First, simplify \[\int {\left\{ {\dfrac{{\left( {\sec x - \csc x} \right)}}{{2\cot x - \sec x - \csc x}}} \right\}} dx\] by putting \[\sec x = \dfrac{1}{{\cos x}}\] , \[\csc x = \dfrac{1}{{\sin x}}\], \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]. Then apply the formula \[2{\cos ^2}x - 1 = \cos 2x\]. After that, substitute \[2x = u\] and derivative it. Then rewrite the integration in terms of \[u\]. Then apply integration formula \[\int {\sec xdx = \log \left| {\sec x + \tan x} \right| + C} \] and substitute \[u = 2x\].
Formula used
Trigonometric ratios:
\[\sec x = \dfrac{1}{{\cos x}}\]
\[\csc x = \dfrac{1}{{\sin x}}\]
\[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[\cos 2x = 2\cos^{2} x - 1\]
\[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\]
Complete step by step solution:
The given integral is \[\int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\].
Let consider,
\[I = \int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\]
Let’s simplify the right-hand side of the above equation using the trigonometric ratios.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}} \right\}} dx\]
Simplify the above integral.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Now multiply the numerator and denominator of the first term in denominator by \[\cos x\].
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x}}{{\sin x \cos x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x - 1}}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Cancel out the common terms.
\[I = \int {\left\{ {\dfrac{1}{{2\cos^{2}x - 1}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\cos\left( {2x} \right)}}} dx\] [ Since \[\cos 2x = 2\cos^{2}x - 1\]]
\[ \Rightarrow \]\[I = \int {\sec\left( {2x} \right)} dx\] [ Since \[\sec x = \dfrac{1}{{\cos x}}\]]
Apply the substitution method of integration.
Substitute \[2x = u\] in the above integral.
Differentiate \[2x = u\] with respect to \[x\].
\[2 = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[2dx = du\]
Then,
\[I = \int {\sec\left( u \right)} \dfrac{{du}}{2}\]
Simplify the above integral.
\[I = \dfrac{1}{2}\int {\sec\left( u \right)} du\]
Now apply the standard integral formula \[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\].
Integrate with respect to \[u\].
\[I = \dfrac{1}{2}\left[ {\log\left| {\sec u + \tan u} \right| + C} \right]\]
\[ \Rightarrow \]\[I = \dfrac{1}{2}\log\left| {\sec u + \tan u} \right| + C\]
Resubstitute the value of \[u\].
\[I = \dfrac{1}{2}log\left| {\sec 2x + \tan 2x} \right| + C\]
Hence the correct option is C.
Note: Students are often forgot to put \[u = 2x\] at the end of the solution. They marked option A is correct. But the correct option is option C.
Formula used
Trigonometric ratios:
\[\sec x = \dfrac{1}{{\cos x}}\]
\[\csc x = \dfrac{1}{{\sin x}}\]
\[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[\cos 2x = 2\cos^{2} x - 1\]
\[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\]
Complete step by step solution:
The given integral is \[\int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\].
Let consider,
\[I = \int {\left\{ {\dfrac{{\left( {\sec x \cdot \csc x} \right)}}{{\left( {2\cot x - \sec x \cdot \csc x} \right)}}} \right\}} dx\]
Let’s simplify the right-hand side of the above equation using the trigonometric ratios.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\cos x}} \cdot \dfrac{1}{{\sin x}}} \right)}}} \right\}} dx\]
Simplify the above integral.
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos x}}{{\sin x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Now multiply the numerator and denominator of the first term in denominator by \[\cos x\].
\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x}}{{\sin x \cos x}} - \dfrac{1}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\left\{ {\dfrac{{\left( {\dfrac{1}{{\sin x \cos x}}} \right)}}{{\left( {\dfrac{{2\cos^{2}x - 1}}{{\sin x \cos x}}} \right)}}} \right\}} dx\]
Cancel out the common terms.
\[I = \int {\left\{ {\dfrac{1}{{2\cos^{2}x - 1}}} \right\}} dx\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\cos\left( {2x} \right)}}} dx\] [ Since \[\cos 2x = 2\cos^{2}x - 1\]]
\[ \Rightarrow \]\[I = \int {\sec\left( {2x} \right)} dx\] [ Since \[\sec x = \dfrac{1}{{\cos x}}\]]
Apply the substitution method of integration.
Substitute \[2x = u\] in the above integral.
Differentiate \[2x = u\] with respect to \[x\].
\[2 = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[2dx = du\]
Then,
\[I = \int {\sec\left( u \right)} \dfrac{{du}}{2}\]
Simplify the above integral.
\[I = \dfrac{1}{2}\int {\sec\left( u \right)} du\]
Now apply the standard integral formula \[\int {\sec\left( x \right)} dx = \log\left| {\sec x + \tan x} \right| + C\].
Integrate with respect to \[u\].
\[I = \dfrac{1}{2}\left[ {\log\left| {\sec u + \tan u} \right| + C} \right]\]
\[ \Rightarrow \]\[I = \dfrac{1}{2}\log\left| {\sec u + \tan u} \right| + C\]
Resubstitute the value of \[u\].
\[I = \dfrac{1}{2}log\left| {\sec 2x + \tan 2x} \right| + C\]
Hence the correct option is C.
Note: Students are often forgot to put \[u = 2x\] at the end of the solution. They marked option A is correct. But the correct option is option C.
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
