
What is the value of the integral \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \]?
A. \[\dfrac{1}{{n + 1}}\]
B. \[\dfrac{1}{{n + 2}}\]
C. \[\dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
D. \[\dfrac{1}{{n + 1}} + \dfrac{1}{{n + 2}}\]
Answer
162.3k+ views
Hint: Here, a definite integral is given. First, multiply the given integral by \[ - 1\] and simplify it. Then, rewrite \[\left( { - x} \right)\] as \[\left( {1 - x - 1} \right)\] in the integral. After that, perform some mathematical operations and simplify the integral. Then, apply the subtraction rule of the integration and solve the integrals by using the standard integral formula. In the end, apply the upper and the lower limits to get the required answer.
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
