
What is the value of the integral \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \]?
A. \[\dfrac{1}{{n + 1}}\]
B. \[\dfrac{1}{{n + 2}}\]
C. \[\dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
D. \[\dfrac{1}{{n + 1}} + \dfrac{1}{{n + 2}}\]
Answer
216.6k+ views
Hint: Here, a definite integral is given. First, multiply the given integral by \[ - 1\] and simplify it. Then, rewrite \[\left( { - x} \right)\] as \[\left( {1 - x - 1} \right)\] in the integral. After that, perform some mathematical operations and simplify the integral. Then, apply the subtraction rule of the integration and solve the integrals by using the standard integral formula. In the end, apply the upper and the lower limits to get the required answer.
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

