
What is the value of the integral \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \]?
A. \[\dfrac{1}{{n + 1}}\]
B. \[\dfrac{1}{{n + 2}}\]
C. \[\dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
D. \[\dfrac{1}{{n + 1}} + \dfrac{1}{{n + 2}}\]
Answer
161.4k+ views
Hint: Here, a definite integral is given. First, multiply the given integral by \[ - 1\] and simplify it. Then, rewrite \[\left( { - x} \right)\] as \[\left( {1 - x - 1} \right)\] in the integral. After that, perform some mathematical operations and simplify the integral. Then, apply the subtraction rule of the integration and solve the integrals by using the standard integral formula. In the end, apply the upper and the lower limits to get the required answer.
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Recently Updated Pages
The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

JEE Advanced 2021 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced Study Plan 2025: Expert Tips and Preparation Guide

JEE Advanced 2022 Physics Question Paper 2 with Solutions

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
