
The shortest distance between the lines \[\overrightarrow{r}\text{ }=\text{ }\left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)+\widehat{i}t\]and \[\overrightarrow{r}\text{ }=\text{ }\widehat{i}-\widehat{j}+2\widehat{k}+\widehat{j}s\] (t and s being parameters) is
A \[\sqrt{21}\]
B \[\sqrt{102}\]
C 4
D 3
Answer
161.1k+ views
Hint: In this question, we need to find the shortest distance between the two lines. The general form of line is given as \[\overrightarrow{r}\text{ }=\text{ }\overrightarrow{a}\text{ }+\alpha \overrightarrow{b}\], where \[\overrightarrow{r}\] is the position vector of the arbitrary point lie on line, \[\overrightarrow{a}\]is any point on that line, \[\alpha \] is any real number and \[\overrightarrow{b}\]is the direction ratio. To find distance we need to calculate the difference between Position vector such as \[\overrightarrow{{{a}_{2}}}\] (position vector of point, C lie on second line) - \[\overrightarrow{{{a}_{1}}}\](position vector of point, A lie on first line). Also, we need the cross-product of the direction ratio of two lines such as\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\].
Formula Used: Formula used to determine the distance between two lines is given as
\[\left\{ \left( \overrightarrow{{{a}_{2}}}\text{ }\text{ }\overrightarrow{{{a}_{1}}} \right)\left( \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right) \right\}/\left| \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right|\], where \[\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}}\] is the difference between position vector of points, A and C on two lines, (\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]) is the cross product between the direction ratio of two lines, and |\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]| is the mode of the cross product of direction ratio of two lines.
Complete step by step solution: In the given question, the equation of two lines is given as
\[\overrightarrow{{{r}_{1}}}\text{ }=\text{ }\left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)+\widehat{i}t\](Let’s say line 1)
And
\[\overrightarrow{{{r}_{2}}}\text{ }=\text{ }\widehat{i}-\widehat{j}+2\widehat{k}+\widehat{j}s\](Let’s say line 2)
Comparing both the equation of lines with the general equation of line such as
\[\overrightarrow{r}\text{ }=\text{ }\overrightarrow{a}\text{ }+\alpha \overrightarrow{b}\], where α is any real number
Similarly,
\[\overrightarrow{{{r}_{1}}}\text{ }=\text{ }\overrightarrow{{{a}_{1}}}\text{ }+\alpha \overrightarrow{{{b}_{1}}}\](General equation for line 1), where\[\overrightarrow{{{a}_{1}}}\text{ }=\text{ }\left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)\], \[\overrightarrow{{{b}_{1}}}\text{ }=\text{ }\widehat{i}\], and α = t

And
\[\overrightarrow{{{r}_{2}}}\text{ }=\text{ }\overrightarrow{{{a}_{2}}}\text{ }+\alpha \overrightarrow{{{b}_{2}}}\](General equation for line 2), where\[\overrightarrow{{{a}_{2}}}\text{ }=\text{ }\left( \widehat{i}-\widehat{j}+2\widehat{k} \right)\], \[\overrightarrow{{{b}_{2}}}\text{ }=\text{ }\widehat{j}\], and α = s.

Now the formula to find the shortest distance between the two lines is given as
\[\left\{ \left( \overrightarrow{{{a}_{2}}}\text{ }\text{ }\overrightarrow{{{a}_{1}}} \right)\left( \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right) \right\}/\left| \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right|\]
Finding
(\[\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}}\]) = (\[\widehat{i}-\widehat{j}+2\widehat{k}\]) - (\[3\widehat{i}-2\widehat{j}-2\widehat{k}\])
= \[-2\widehat{i}\text{ }+\text{ }\widehat{j}\text{ }+\text{ }4\widehat{k}\]
(\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]) = \[\widehat{i}\times \widehat{j}=\widehat{k}\]
|\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]| = \[\left| \widehat{k} \right|=1\]
Putting all these values in a formula such as
\[\left\{ \left( \overrightarrow{{{a}_{2}}}\text{ }\text{ }\overrightarrow{{{a}_{1}}} \right)\left( \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right) \right\}/\left| \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right|=\left\{ \left( -2\widehat{i}\text{ }+\text{ }\widehat{j}\text{ }+\text{ }4\widehat{k} \right)\left( \widehat{k} \right) \right\}/1\]
= 4
Option ‘C’ is correct
Note: It is important to note that the always difference is calculated by subtracting the first component from the second component such as \[\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}}\] (difference between points of two lines). Whenever we find a cross product we need to notice the unit vector such that when we find a cross product between \[\widehat{i}\times \widehat{j}\] it will give \[\widehat{k}\]unit vector, \[\widehat{j}\times \widehat{k}\]give \[\widehat{i}\]unit vector, \[\widehat{k}\times \widehat{i}\]= \[\widehat{j}\]unit vector, \[\widehat{j}\times \widehat{i}\]= -\[\widehat{k}\]unit vector, \[\widehat{k}\times \widehat{j}\]= -\[\widehat{i}\] and \[\widehat{i}\times \widehat{k}\] = -\[\widehat{j}\].
Formula Used: Formula used to determine the distance between two lines is given as
\[\left\{ \left( \overrightarrow{{{a}_{2}}}\text{ }\text{ }\overrightarrow{{{a}_{1}}} \right)\left( \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right) \right\}/\left| \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right|\], where \[\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}}\] is the difference between position vector of points, A and C on two lines, (\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]) is the cross product between the direction ratio of two lines, and |\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]| is the mode of the cross product of direction ratio of two lines.
Complete step by step solution: In the given question, the equation of two lines is given as
\[\overrightarrow{{{r}_{1}}}\text{ }=\text{ }\left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)+\widehat{i}t\](Let’s say line 1)
And
\[\overrightarrow{{{r}_{2}}}\text{ }=\text{ }\widehat{i}-\widehat{j}+2\widehat{k}+\widehat{j}s\](Let’s say line 2)
Comparing both the equation of lines with the general equation of line such as
\[\overrightarrow{r}\text{ }=\text{ }\overrightarrow{a}\text{ }+\alpha \overrightarrow{b}\], where α is any real number
Similarly,
\[\overrightarrow{{{r}_{1}}}\text{ }=\text{ }\overrightarrow{{{a}_{1}}}\text{ }+\alpha \overrightarrow{{{b}_{1}}}\](General equation for line 1), where\[\overrightarrow{{{a}_{1}}}\text{ }=\text{ }\left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)\], \[\overrightarrow{{{b}_{1}}}\text{ }=\text{ }\widehat{i}\], and α = t

And
\[\overrightarrow{{{r}_{2}}}\text{ }=\text{ }\overrightarrow{{{a}_{2}}}\text{ }+\alpha \overrightarrow{{{b}_{2}}}\](General equation for line 2), where\[\overrightarrow{{{a}_{2}}}\text{ }=\text{ }\left( \widehat{i}-\widehat{j}+2\widehat{k} \right)\], \[\overrightarrow{{{b}_{2}}}\text{ }=\text{ }\widehat{j}\], and α = s.

Now the formula to find the shortest distance between the two lines is given as
\[\left\{ \left( \overrightarrow{{{a}_{2}}}\text{ }\text{ }\overrightarrow{{{a}_{1}}} \right)\left( \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right) \right\}/\left| \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right|\]
Finding
(\[\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}}\]) = (\[\widehat{i}-\widehat{j}+2\widehat{k}\]) - (\[3\widehat{i}-2\widehat{j}-2\widehat{k}\])
= \[-2\widehat{i}\text{ }+\text{ }\widehat{j}\text{ }+\text{ }4\widehat{k}\]
(\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]) = \[\widehat{i}\times \widehat{j}=\widehat{k}\]
|\[\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\]| = \[\left| \widehat{k} \right|=1\]
Putting all these values in a formula such as
\[\left\{ \left( \overrightarrow{{{a}_{2}}}\text{ }\text{ }\overrightarrow{{{a}_{1}}} \right)\left( \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right) \right\}/\left| \overrightarrow{{{b}_{1}}}\text{ }\times \text{ }\overrightarrow{{{b}_{2}}} \right|=\left\{ \left( -2\widehat{i}\text{ }+\text{ }\widehat{j}\text{ }+\text{ }4\widehat{k} \right)\left( \widehat{k} \right) \right\}/1\]
= 4
Option ‘C’ is correct
Note: It is important to note that the always difference is calculated by subtracting the first component from the second component such as \[\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}}\] (difference between points of two lines). Whenever we find a cross product we need to notice the unit vector such that when we find a cross product between \[\widehat{i}\times \widehat{j}\] it will give \[\widehat{k}\]unit vector, \[\widehat{j}\times \widehat{k}\]give \[\widehat{i}\]unit vector, \[\widehat{k}\times \widehat{i}\]= \[\widehat{j}\]unit vector, \[\widehat{j}\times \widehat{i}\]= -\[\widehat{k}\]unit vector, \[\widehat{k}\times \widehat{j}\]= -\[\widehat{i}\] and \[\widehat{i}\times \widehat{k}\] = -\[\widehat{j}\].
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
