
The point of intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ lies on the line
A. $x-y=0$
B. $(x+y)(a+b)=2ab$
C. $(lx+my)(a+b)=(l+m)ab$
D. All of these
Answer
190.5k+ views
Hint: In this question, we have to find the point of intersection of the given lines. For this, the direct formula we have for finding the point of intersection is applied. By substituting the obtained coordinates in the given equations, we get the equations of the lines that pass through this point.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
For calculating the point of intersection of the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] we use,
$\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)$
Complete step by step solution: Given that,
The lines that intersect at a point are
$\dfrac{x}{a}+\dfrac{y}{b}=1\text{ }...(1)$
$\dfrac{x}{b}+\dfrac{y}{a}=1\text{ }...(2)$
We can write the above equations as
$\begin{align}
& \Rightarrow bx+ay=ab \\
& \Rightarrow bx+ay-ab=0\text{ }...(3) \\
\end{align}$
$\begin{align}
& \Rightarrow ax+by=ab \\
& \Rightarrow ax+by-ab=0\text{ }...(4) \\
\end{align}$
Then, their point of intersection is
$\begin{align}
& =\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right) \\
& =\left( \dfrac{a(-ab)-b(-ab)}{b(b)-a(a)},\dfrac{(-ab)a-(-ab)b}{b(b)-a(a)} \right) \\
& =\left( \dfrac{ab(b-a)}{(b-a)(b+a)},\dfrac{ab(b-a)}{(b-a)(b+a)} \right) \\
& =\left( \dfrac{ab}{a+b},\dfrac{ab}{a+b} \right) \\
\end{align}$
To get the equation of the required line, the obtained point is substituted in the given equations. If any of them are satisfied with the point, then that equation is the required one.
So, the first equation, we have $x-y=0$
On substituting, we get
$\begin{align}
& =x-y \\
& =\dfrac{ab}{a+b}-\dfrac{ab}{a+b} \\
& =0 \\
\end{align}$
Thus, the given lines lie on this line with the equation $x-y=0$.
The second equation we have $(x+y)(a+b)=2ab$
On substituting, we get
$\begin{align}
& =(x+y)(a+b) \\
& =\left( \dfrac{ab}{a+b}+\dfrac{ab}{a+b} \right)(a+b) \\
& =\dfrac{2ab(a+b)}{(a+b)} \\
& =2ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(x+y)(a+b)=2ab$.
The third equation we have $(lx+my)(a+b)=(l+m)ab$
On substituting, we get
$\begin{align}
& =(lx+my)(a+b) \\
& =\left( \dfrac{lab}{a+b}+\dfrac{mab}{a+b} \right)(a+b) \\
& =\dfrac{ab(l+m)(a+b)}{(a+b)} \\
& =(l+m)ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(lx+my)(a+b)=(l+m)ab$.
Therefore, all the given equations are true with the obtained point of intersection.
Option ‘D’ is correct
Note: Here we need to remember that the point of intersection of the given lines is also a point on the required line. So, if the equation is true for the point obtained then it will be the required equation.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
For calculating the point of intersection of the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] we use,
$\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)$
Complete step by step solution: Given that,
The lines that intersect at a point are
$\dfrac{x}{a}+\dfrac{y}{b}=1\text{ }...(1)$
$\dfrac{x}{b}+\dfrac{y}{a}=1\text{ }...(2)$
We can write the above equations as
$\begin{align}
& \Rightarrow bx+ay=ab \\
& \Rightarrow bx+ay-ab=0\text{ }...(3) \\
\end{align}$
$\begin{align}
& \Rightarrow ax+by=ab \\
& \Rightarrow ax+by-ab=0\text{ }...(4) \\
\end{align}$
Then, their point of intersection is
$\begin{align}
& =\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right) \\
& =\left( \dfrac{a(-ab)-b(-ab)}{b(b)-a(a)},\dfrac{(-ab)a-(-ab)b}{b(b)-a(a)} \right) \\
& =\left( \dfrac{ab(b-a)}{(b-a)(b+a)},\dfrac{ab(b-a)}{(b-a)(b+a)} \right) \\
& =\left( \dfrac{ab}{a+b},\dfrac{ab}{a+b} \right) \\
\end{align}$
To get the equation of the required line, the obtained point is substituted in the given equations. If any of them are satisfied with the point, then that equation is the required one.
So, the first equation, we have $x-y=0$
On substituting, we get
$\begin{align}
& =x-y \\
& =\dfrac{ab}{a+b}-\dfrac{ab}{a+b} \\
& =0 \\
\end{align}$
Thus, the given lines lie on this line with the equation $x-y=0$.
The second equation we have $(x+y)(a+b)=2ab$
On substituting, we get
$\begin{align}
& =(x+y)(a+b) \\
& =\left( \dfrac{ab}{a+b}+\dfrac{ab}{a+b} \right)(a+b) \\
& =\dfrac{2ab(a+b)}{(a+b)} \\
& =2ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(x+y)(a+b)=2ab$.
The third equation we have $(lx+my)(a+b)=(l+m)ab$
On substituting, we get
$\begin{align}
& =(lx+my)(a+b) \\
& =\left( \dfrac{lab}{a+b}+\dfrac{mab}{a+b} \right)(a+b) \\
& =\dfrac{ab(l+m)(a+b)}{(a+b)} \\
& =(l+m)ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(lx+my)(a+b)=(l+m)ab$.
Therefore, all the given equations are true with the obtained point of intersection.
Option ‘D’ is correct
Note: Here we need to remember that the point of intersection of the given lines is also a point on the required line. So, if the equation is true for the point obtained then it will be the required equation.
Recently Updated Pages
Sum of Squares - Formulas and FAQs

Crack JEE Advanced 2026 with Vedantu's Live Classes

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2026 Revision Notes for Chemical Equilibrium - Free PDF Download

JEE Advanced 2022 Question Paper 2 with Solutions

JEE Advanced 2022 Question Paper with Solutions PDF free Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Notes

Top IIT Colleges in India 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

NCERT Solutions For Class 11 Maths Chapter 4 Complex Numbers And Quadratic Equations - 2025-26

NCERT Solutions For Class 11 Maths Chapter 6 Permutations And Combinations - 2025-26

Equation of Trajectory in Projectile Motion: Derivation & Proof

NCERT Solutions For Class 11 Maths Chapter 5 Linear Inequalities - 2025-26

Atomic Structure: Definition, Models, and Examples
