
The point of intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ lies on the line
A. $x-y=0$
B. $(x+y)(a+b)=2ab$
C. $(lx+my)(a+b)=(l+m)ab$
D. All of these
Answer
162.9k+ views
Hint: In this question, we have to find the point of intersection of the given lines. For this, the direct formula we have for finding the point of intersection is applied. By substituting the obtained coordinates in the given equations, we get the equations of the lines that pass through this point.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
For calculating the point of intersection of the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] we use,
$\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)$
Complete step by step solution: Given that,
The lines that intersect at a point are
$\dfrac{x}{a}+\dfrac{y}{b}=1\text{ }...(1)$
$\dfrac{x}{b}+\dfrac{y}{a}=1\text{ }...(2)$
We can write the above equations as
$\begin{align}
& \Rightarrow bx+ay=ab \\
& \Rightarrow bx+ay-ab=0\text{ }...(3) \\
\end{align}$
$\begin{align}
& \Rightarrow ax+by=ab \\
& \Rightarrow ax+by-ab=0\text{ }...(4) \\
\end{align}$
Then, their point of intersection is
$\begin{align}
& =\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right) \\
& =\left( \dfrac{a(-ab)-b(-ab)}{b(b)-a(a)},\dfrac{(-ab)a-(-ab)b}{b(b)-a(a)} \right) \\
& =\left( \dfrac{ab(b-a)}{(b-a)(b+a)},\dfrac{ab(b-a)}{(b-a)(b+a)} \right) \\
& =\left( \dfrac{ab}{a+b},\dfrac{ab}{a+b} \right) \\
\end{align}$
To get the equation of the required line, the obtained point is substituted in the given equations. If any of them are satisfied with the point, then that equation is the required one.
So, the first equation, we have $x-y=0$
On substituting, we get
$\begin{align}
& =x-y \\
& =\dfrac{ab}{a+b}-\dfrac{ab}{a+b} \\
& =0 \\
\end{align}$
Thus, the given lines lie on this line with the equation $x-y=0$.
The second equation we have $(x+y)(a+b)=2ab$
On substituting, we get
$\begin{align}
& =(x+y)(a+b) \\
& =\left( \dfrac{ab}{a+b}+\dfrac{ab}{a+b} \right)(a+b) \\
& =\dfrac{2ab(a+b)}{(a+b)} \\
& =2ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(x+y)(a+b)=2ab$.
The third equation we have $(lx+my)(a+b)=(l+m)ab$
On substituting, we get
$\begin{align}
& =(lx+my)(a+b) \\
& =\left( \dfrac{lab}{a+b}+\dfrac{mab}{a+b} \right)(a+b) \\
& =\dfrac{ab(l+m)(a+b)}{(a+b)} \\
& =(l+m)ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(lx+my)(a+b)=(l+m)ab$.
Therefore, all the given equations are true with the obtained point of intersection.
Option ‘D’ is correct
Note: Here we need to remember that the point of intersection of the given lines is also a point on the required line. So, if the equation is true for the point obtained then it will be the required equation.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
For calculating the point of intersection of the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] we use,
$\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)$
Complete step by step solution: Given that,
The lines that intersect at a point are
$\dfrac{x}{a}+\dfrac{y}{b}=1\text{ }...(1)$
$\dfrac{x}{b}+\dfrac{y}{a}=1\text{ }...(2)$
We can write the above equations as
$\begin{align}
& \Rightarrow bx+ay=ab \\
& \Rightarrow bx+ay-ab=0\text{ }...(3) \\
\end{align}$
$\begin{align}
& \Rightarrow ax+by=ab \\
& \Rightarrow ax+by-ab=0\text{ }...(4) \\
\end{align}$
Then, their point of intersection is
$\begin{align}
& =\left( \dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right) \\
& =\left( \dfrac{a(-ab)-b(-ab)}{b(b)-a(a)},\dfrac{(-ab)a-(-ab)b}{b(b)-a(a)} \right) \\
& =\left( \dfrac{ab(b-a)}{(b-a)(b+a)},\dfrac{ab(b-a)}{(b-a)(b+a)} \right) \\
& =\left( \dfrac{ab}{a+b},\dfrac{ab}{a+b} \right) \\
\end{align}$
To get the equation of the required line, the obtained point is substituted in the given equations. If any of them are satisfied with the point, then that equation is the required one.
So, the first equation, we have $x-y=0$
On substituting, we get
$\begin{align}
& =x-y \\
& =\dfrac{ab}{a+b}-\dfrac{ab}{a+b} \\
& =0 \\
\end{align}$
Thus, the given lines lie on this line with the equation $x-y=0$.
The second equation we have $(x+y)(a+b)=2ab$
On substituting, we get
$\begin{align}
& =(x+y)(a+b) \\
& =\left( \dfrac{ab}{a+b}+\dfrac{ab}{a+b} \right)(a+b) \\
& =\dfrac{2ab(a+b)}{(a+b)} \\
& =2ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(x+y)(a+b)=2ab$.
The third equation we have $(lx+my)(a+b)=(l+m)ab$
On substituting, we get
$\begin{align}
& =(lx+my)(a+b) \\
& =\left( \dfrac{lab}{a+b}+\dfrac{mab}{a+b} \right)(a+b) \\
& =\dfrac{ab(l+m)(a+b)}{(a+b)} \\
& =(l+m)ab \\
\end{align}$
Thus, the given lines lie on this line with the equation $(lx+my)(a+b)=(l+m)ab$.
Therefore, all the given equations are true with the obtained point of intersection.
Option ‘D’ is correct
Note: Here we need to remember that the point of intersection of the given lines is also a point on the required line. So, if the equation is true for the point obtained then it will be the required equation.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix
