
The pair of straight lines perpendicular to the pair of lines $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ has the equation
A. $a{{x}^{2}}-2hxy+b{{y}^{2}}=0$
B. $a{{x}^{2}}+2hxy+b{{y}^{2}}n=0$
C. $a{{x}^{2}}+2hxy-b{{y}^{2}}=0$
D. $a{{y}^{2}}-2hxy+b{{x}^{2}}=0$
Answer
163.2k+ views
Hint: If two pairs of straight line is perpendicular to each other then the lines of one pair of straight line is perpendicular to the lines of another pairs of straight line. The slope of one set of lines is the inverse of the slopes of another set of line.
Formula Used: 3. $y=mx+c$
4. $a{{x}^{2}}+2hxy+b{{y}^{2}}$
Complete step by step solution: The given equation of the straight line is $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$.
Let the lines of the given pair of straight lines are given as-
$ y={{m}_{1}}x$
$ y={{m}_{2}}x$
Where ${{m}_{1}},{{m}_{2}}$ are the slope of the lines.
Now we know that the sum of the two slopes which is equal to $\dfrac{-2h}{b}$ and multipication of the two slopes which is equal to $\dfrac{a}{b}$ . So, we can write ${{m}_{1}}+{{m}_{2}}=\dfrac{-2h}{b}$ and ${{m}_{1}}{{m}_{2}}=\dfrac{a}{b}$ .
Now if another pair of straight lines is perpendicular to $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ then the lines are also perpendicular to the above lines.
So, the equation of the lines perpendicular to
$ y={{m}_{1}}x$
$y={{m}_{2}}x $
is given as follows-
$ y+\dfrac{1}{{{m}_{1}}}x=0 $
$y+\dfrac{1}{{{m}_{2}}}x=0 $
Thus the equation of the pair of straight lines is given as follows-
$(y+\dfrac{1}{{{m}_{1}}}x)(y+\dfrac{1}{{{m}_{2}}}x)=0 $
${{y}^{2}}+\dfrac{1}{{{m}_{1}}}xy+\dfrac{1}{{{m}_{2}}}xy+\dfrac{1}{{{m}_{1}}}.\dfrac{1}{{{m}_{2}}}{{x}^{2}}=0 $
$ {{m}_{1}}{{m}_{2}}{{y}^{2}}+xy\left( {{m}_{1}}+{{m}_{2}} \right)+{{x}^{2}}=0$
Putting the value of ${{m}_{1}}+{{m}_{2}}=\dfrac{-2h}{b}$ and ${{m}_{1}}{{m}_{2}}=\dfrac{a}{b}$ we get-
$\dfrac{a}{b}{{y}^{2}}-\dfrac{2h}{b}x+{{x}^{2}}=0$
$a{{y}^{2}}-2hxy+b{{x}^{2}}=0$
Thus we can write that the pair of straight lines perpendicular to the pair of lines $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ has the equation$a{{y}^{2}}-2hxy+b{{x}^{2}}=0$.
Option ‘D’ is correct
Note: Two straight lines are perpendicular means the angle between the straight lines is ${{90}^{o}}$ . This angle can be determined by the formula $\tan \theta =\dfrac{2\sqrt{{{h}^{2}}-ab}}{a+b}$.
Formula Used: 3. $y=mx+c$
4. $a{{x}^{2}}+2hxy+b{{y}^{2}}$
Complete step by step solution: The given equation of the straight line is $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$.
Let the lines of the given pair of straight lines are given as-
$ y={{m}_{1}}x$
$ y={{m}_{2}}x$
Where ${{m}_{1}},{{m}_{2}}$ are the slope of the lines.
Now we know that the sum of the two slopes which is equal to $\dfrac{-2h}{b}$ and multipication of the two slopes which is equal to $\dfrac{a}{b}$ . So, we can write ${{m}_{1}}+{{m}_{2}}=\dfrac{-2h}{b}$ and ${{m}_{1}}{{m}_{2}}=\dfrac{a}{b}$ .
Now if another pair of straight lines is perpendicular to $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ then the lines are also perpendicular to the above lines.
So, the equation of the lines perpendicular to
$ y={{m}_{1}}x$
$y={{m}_{2}}x $
is given as follows-
$ y+\dfrac{1}{{{m}_{1}}}x=0 $
$y+\dfrac{1}{{{m}_{2}}}x=0 $
Thus the equation of the pair of straight lines is given as follows-
$(y+\dfrac{1}{{{m}_{1}}}x)(y+\dfrac{1}{{{m}_{2}}}x)=0 $
${{y}^{2}}+\dfrac{1}{{{m}_{1}}}xy+\dfrac{1}{{{m}_{2}}}xy+\dfrac{1}{{{m}_{1}}}.\dfrac{1}{{{m}_{2}}}{{x}^{2}}=0 $
$ {{m}_{1}}{{m}_{2}}{{y}^{2}}+xy\left( {{m}_{1}}+{{m}_{2}} \right)+{{x}^{2}}=0$
Putting the value of ${{m}_{1}}+{{m}_{2}}=\dfrac{-2h}{b}$ and ${{m}_{1}}{{m}_{2}}=\dfrac{a}{b}$ we get-
$\dfrac{a}{b}{{y}^{2}}-\dfrac{2h}{b}x+{{x}^{2}}=0$
$a{{y}^{2}}-2hxy+b{{x}^{2}}=0$
Thus we can write that the pair of straight lines perpendicular to the pair of lines $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ has the equation$a{{y}^{2}}-2hxy+b{{x}^{2}}=0$.
Option ‘D’ is correct
Note: Two straight lines are perpendicular means the angle between the straight lines is ${{90}^{o}}$ . This angle can be determined by the formula $\tan \theta =\dfrac{2\sqrt{{{h}^{2}}-ab}}{a+b}$.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix
