
The equation of plane passing through a point \[A\left( {2, - 1,3} \right)\] and parallel to the vectors \[a = \left( {3,0, - 1} \right)\;\] and \[b = \left( { - 3,2,2} \right)\;\] is [Orissa JEE \[2005\]]
A) \[\;\;2x - 3y + 6z - 25 = 0\]
B) \[\;\;2x - 3y + 6z + 25 = 0\]
C) \[\;3x - 2y + 6z - 25 = 0\]
D) \[\;3x - 2y + 6z + 25 = 0\]
Answer
216k+ views
Hint: in this question we have to equation of the plane for this apply the formula of general equation of plane. By using given condition find the direction ratio of vector normal to the plane. Substitute value of direction ratio in general equation of plane.
Formula Used: General equation of plane is given by
\[A(x - {x_1}) + B(y - {y_1}) + C(z - {z_1}) = 0\]
Where
A, B, C are direction ratio of vector which is normal to the plane
\[({x_1},{y_1}{z_1})\]Coordinate through which plane passing.
Complete step by step solution: Given: Coordinates through which plane passes and points to which plane is parallel.
Now required equation of plane is given by
\[A(x - {x_1}) + B(y - {y_1}) + C(z - {z_1}) = 0\]
\[A(x - 2) + B(y + 1) + C(z - 3) = 0\]
Plane is parallel to \[a = \left( {3,0, - 1} \right)\;\]and \[b = \left( { - 3,2,2} \right)\;\]
Normal to the plane is given by
\[Ai + Bj + Ck = 0\]
Where
A, B, C are direction ratio of vector which is normal to the plane
It is given in the question that plane is parallel to \[a = \left( {3,0, - 1} \right)\;\]and \[b = \left( { - 3,2,2} \right)\;\]
Therefore,
Dot product of normal and a, dot product of normal and b is zero
\[(Ai + Bj + Ck).(3i + 0j - 1k) = 0\]
\[3A - C = 0\]…………………… (i)
\[(Ai + Bj + Ck).( - 3i + 2j + 2k) = 0\]
\[ - 3A + 2B + 2C = 0\]…………… (ii)
From equation (i) and (ii) we get direction ratio of vector normal to the plane
\[A = 2,B = - 3,C = 6\]
Put these values in \[A(x - 2) + B(y + 1) + C(z - 3) = 0\]
Now required equation of plane is given by
\[2(x - 2) - 3(y + 1) + 6(z - 3) = 0\]
\[2x - 4 - 3y - 3 + 6z - 18 = 0\]
\[2x - 3y + 6z - 25 = 0\]
Option ‘A’ is correct
Note: Here we must remember that if plane is parallel to given point then normal to the plane and normal to that point is same. Dot product of perpendicular vector is always zero.
Formula Used: General equation of plane is given by
\[A(x - {x_1}) + B(y - {y_1}) + C(z - {z_1}) = 0\]
Where
A, B, C are direction ratio of vector which is normal to the plane
\[({x_1},{y_1}{z_1})\]Coordinate through which plane passing.
Complete step by step solution: Given: Coordinates through which plane passes and points to which plane is parallel.
Now required equation of plane is given by
\[A(x - {x_1}) + B(y - {y_1}) + C(z - {z_1}) = 0\]
\[A(x - 2) + B(y + 1) + C(z - 3) = 0\]
Plane is parallel to \[a = \left( {3,0, - 1} \right)\;\]and \[b = \left( { - 3,2,2} \right)\;\]
Normal to the plane is given by
\[Ai + Bj + Ck = 0\]
Where
A, B, C are direction ratio of vector which is normal to the plane
It is given in the question that plane is parallel to \[a = \left( {3,0, - 1} \right)\;\]and \[b = \left( { - 3,2,2} \right)\;\]
Therefore,
Dot product of normal and a, dot product of normal and b is zero
\[(Ai + Bj + Ck).(3i + 0j - 1k) = 0\]
\[3A - C = 0\]…………………… (i)
\[(Ai + Bj + Ck).( - 3i + 2j + 2k) = 0\]
\[ - 3A + 2B + 2C = 0\]…………… (ii)
From equation (i) and (ii) we get direction ratio of vector normal to the plane
\[A = 2,B = - 3,C = 6\]
Put these values in \[A(x - 2) + B(y + 1) + C(z - 3) = 0\]
Now required equation of plane is given by
\[2(x - 2) - 3(y + 1) + 6(z - 3) = 0\]
\[2x - 4 - 3y - 3 + 6z - 18 = 0\]
\[2x - 3y + 6z - 25 = 0\]
Option ‘A’ is correct
Note: Here we must remember that if plane is parallel to given point then normal to the plane and normal to that point is same. Dot product of perpendicular vector is always zero.
Recently Updated Pages
Haryana B.Tech Counselling 2023: Seat Allotment Procedure

IIT Ropar Cutoff 2025: Expected Ranks for CSE, Mechanical, Electrical, OBC & More

JEE Principles Related to Practical Chemistry important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Main Surface Chemistry – Explanation, Analysis Techniques and Applications

Difference Between Asteroid and Comet

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

