
In \[\Delta ABC\], if \[{\sin ^2}\dfrac{A}{2}\], \[{\sin ^2}\dfrac{B}{2}\], \[{\sin ^2}\dfrac{C}{2}\] be in H.P, the find the progression in which a, b, c are connected.
A. A.P
B. G.P
C. H.P.
D. None of these
Answer
162k+ views
Hint: First we will apply the condition of HP on the given series. Then substitute the value \[{\sin ^2}\dfrac{A}{2}\], \[{\sin ^2}\dfrac{B}{2}\], \[{\sin ^2}\dfrac{C}{2}\] by using trigonometric functions of half angles of a triangle and simplify it to get the required solution.
Formula used:
Trigonometric functions of half angles
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
The condition of HP is: if a,b,c are in HP, then \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\].
Complete step by step solution:
Given that, \[{\sin ^2}\dfrac{A}{2}\], \[{\sin ^2}\dfrac{B}{2}\], \[{\sin ^2}\dfrac{C}{2}\] are in H.P.
Apply the condition of HP:
\[\dfrac{1}{{{{\sin }^2}\dfrac{A}{2}}} + \dfrac{1}{{{{\sin }^2}\dfrac{C}{2}}} = \dfrac{2}{{{{\sin }^2}\dfrac{B}{2}}}\]
Now apply the formulas \[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \], \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]:
\[ \Rightarrow \dfrac{1}{{{{\left( {\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} } \right)}^2}}} + \dfrac{1}{{{{\left( {\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} } \right)}^2}}} = \dfrac{2}{{{{\left( {\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{bc}}{{\left( {s - b} \right)\left( {s - c} \right)}} + \dfrac{{ab}}{{\left( {s - a} \right)\left( {s - b} \right)}} = \dfrac{{2ac}}{{\left( {s - a} \right)\left( {s - c} \right)}}\]
Now simplify the left side of the equation
\[ \Rightarrow \dfrac{{bc\left( {s - a} \right) + ab\left( {s - c} \right)}}{{\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)}} = \dfrac{{2ac}}{{\left( {s - a} \right)\left( {s - c} \right)}}\]
\[ \Rightarrow \dfrac{{sbc - abc + sab - abc}}{{\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)}} = \dfrac{{2ac}}{{\left( {s - a} \right)\left( {s - c} \right)}}\]
Cancel out \[\left( {s - a} \right)\left( {s - c} \right)\] from the denominator of both sides:
\[ \Rightarrow \dfrac{{sbc - abc + sab - abc}}{{\left( {s - b} \right)}} = \dfrac{{2ac}}{1}\]
Apply cross multiply
\[ \Rightarrow sbc - abc + sab - abc = 2ac\left( {s - b} \right)\]
\[ \Rightarrow sbc + sab - 2abc = 2sac - 2abc\]
Cancel out \[ - 2abc\] from both sides
\[ \Rightarrow sbc + sab = 2sac\]
Divide both sides by \[sabc\]
\[ \Rightarrow \dfrac{{sbc}}{{sabc}} + \dfrac{{sab}}{{sabc}} = \dfrac{{2sac}}{{sabc}}\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\]
It means a, b, and c are in H.P.
Hence option C is the correct option.
Note: Students often confused between Hp and AP. If a series a,b,c are in AP, then \[\dfrac{1}{a}\], \[\dfrac{1}{b}\], \[\dfrac{1}{c}\] are in HP. If a,b,c are in HP, then \[\dfrac{1}{a}\], \[\dfrac{1}{b}\], \[\dfrac{1}{c}\] are in AP.
Formula used:
Trigonometric functions of half angles
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
The condition of HP is: if a,b,c are in HP, then \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\].
Complete step by step solution:
Given that, \[{\sin ^2}\dfrac{A}{2}\], \[{\sin ^2}\dfrac{B}{2}\], \[{\sin ^2}\dfrac{C}{2}\] are in H.P.
Apply the condition of HP:
\[\dfrac{1}{{{{\sin }^2}\dfrac{A}{2}}} + \dfrac{1}{{{{\sin }^2}\dfrac{C}{2}}} = \dfrac{2}{{{{\sin }^2}\dfrac{B}{2}}}\]
Now apply the formulas \[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \], \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]:
\[ \Rightarrow \dfrac{1}{{{{\left( {\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} } \right)}^2}}} + \dfrac{1}{{{{\left( {\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} } \right)}^2}}} = \dfrac{2}{{{{\left( {\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{bc}}{{\left( {s - b} \right)\left( {s - c} \right)}} + \dfrac{{ab}}{{\left( {s - a} \right)\left( {s - b} \right)}} = \dfrac{{2ac}}{{\left( {s - a} \right)\left( {s - c} \right)}}\]
Now simplify the left side of the equation
\[ \Rightarrow \dfrac{{bc\left( {s - a} \right) + ab\left( {s - c} \right)}}{{\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)}} = \dfrac{{2ac}}{{\left( {s - a} \right)\left( {s - c} \right)}}\]
\[ \Rightarrow \dfrac{{sbc - abc + sab - abc}}{{\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)}} = \dfrac{{2ac}}{{\left( {s - a} \right)\left( {s - c} \right)}}\]
Cancel out \[\left( {s - a} \right)\left( {s - c} \right)\] from the denominator of both sides:
\[ \Rightarrow \dfrac{{sbc - abc + sab - abc}}{{\left( {s - b} \right)}} = \dfrac{{2ac}}{1}\]
Apply cross multiply
\[ \Rightarrow sbc - abc + sab - abc = 2ac\left( {s - b} \right)\]
\[ \Rightarrow sbc + sab - 2abc = 2sac - 2abc\]
Cancel out \[ - 2abc\] from both sides
\[ \Rightarrow sbc + sab = 2sac\]
Divide both sides by \[sabc\]
\[ \Rightarrow \dfrac{{sbc}}{{sabc}} + \dfrac{{sab}}{{sabc}} = \dfrac{{2sac}}{{sabc}}\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\]
It means a, b, and c are in H.P.
Hence option C is the correct option.
Note: Students often confused between Hp and AP. If a series a,b,c are in AP, then \[\dfrac{1}{a}\], \[\dfrac{1}{b}\], \[\dfrac{1}{c}\] are in HP. If a,b,c are in HP, then \[\dfrac{1}{a}\], \[\dfrac{1}{b}\], \[\dfrac{1}{c}\] are in AP.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced 2025 - Exam Dates, Eligibility and Registration

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
