
If \[z = \tan\left( {y - ax} \right) + {\left( {y - ax} \right)^{\dfrac{3}{2}}}\] , then show that \[\dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = {a^2}\dfrac{{{\partial ^2}z}}{{\partial {y^2}}}\].
Answer
163.2k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[x\] and calculate the second-order derivative. Follow these steps to calculate the second-order derivative of the given equation with respect to \[y\]. In the end, compare the derivatives to reach the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\tan x} \right) = \sec^{2}x\]
\[\dfrac{\partial }{{\partial x}}\left( {\sec x} \right) = \sec x \tan x\]
\[\dfrac{\partial }{{\partial x}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Product rule of partial differentiation: \[\dfrac{\partial }{{\partial x}}\left( {uv} \right) = u\dfrac{{\partial v}}{{\partial x}} + v\dfrac{{\partial u}}{{\partial x}}\]
Complete step by step solution:
The given trigonometric equation is \[z = \tan\left( {y - ax} \right) + {\left( {y - ax} \right)^{\dfrac{3}{2}}}\].
To Prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = {a^2}\dfrac{{{\partial ^2}u}}{{\partial {y^2}}}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( z \right) = \dfrac{\partial }{{\partial x}}\left( {\tan\left( {y - ax} \right) + {{\left( {y - ax} \right)}^{\dfrac{3}{2}}}} \right)\]
Apply the partial differentiation formulas \[\dfrac{\partial }{{\partial x}}\left( {\tan x} \right) = \sec^{2}x\], \[\dfrac{\partial }{{\partial x}}\left( {{x^n}} \right) = n{x^{n - 1}}\] and chain rule for \[\dfrac{\partial }{{\partial x}}\left( {\tan\left( {y - ax} \right)} \right)\].
\[\dfrac{{\partial z}}{{\partial x}} = \left( {\sec^{2}\left( {y - ax} \right)\dfrac{\partial }{{\partial x}}\left( {y - ax} \right)} \right) + \left( {\dfrac{3}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}\dfrac{\partial }{{\partial x}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = - a\sec^{2}\left( {y - ax} \right) - \dfrac{{3a}}{2}{\left( {y - ax} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = - \left( {a\sec^{2}\left( {y - ax} \right) + \dfrac{{3a}}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}} \right)\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial z}}{{\partial x}}} \right) = - \dfrac{\partial }{{\partial x}}\left( {a\sec^{2}\left( {y - ax} \right) + \dfrac{{3a}}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}} \right)\]
Apply the chain rule for \[\dfrac{\partial }{{\partial x}}\left( {a\sec^{2}\left( {y - ax} \right)} \right)\].
\[\dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( {2a\sec\left( {y - ax} \right)\dfrac{\partial }{{\partial x}}\left( {\sec\left( {y - ax} \right)} \right) + \dfrac{{3a}}{2}\left( {\dfrac{1}{{2\sqrt {y - ax} }}} \right)\dfrac{\partial }{{\partial x}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( {2a\sec\left( {y - ax} \right)\sec\left( {y - ax} \right)\tan\left( {y - ax} \right)\dfrac{\partial }{{\partial x}}\left( {y - ax} \right) + \dfrac{{3a}}{{4\sqrt {y - ax} }}\left( { - a} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( {2a\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right)\left( { - a} \right) - \dfrac{{3{a^2}}}{{4\sqrt {y - ax} }}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( { - 2{a^2}\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right) - \dfrac{{3{a^2}}}{{4\sqrt {y - ax} }}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = {a^2}\left( {2\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right) + \dfrac{3}{{4\sqrt {y - ax} }}} \right)\] \[.....\left( 1 \right)\]
Now differentiate the given equation partially with respect to the variable \[y\].
\[\dfrac{\partial }{{\partial y}}\left( z \right) = \dfrac{\partial }{{\partial y}}\left( {\tan\left( {y - ax} \right) + {{\left( {y - ax} \right)}^{\dfrac{3}{2}}}} \right)\]
Apply the partial differentiation formulas \[\dfrac{\partial }{{\partial x}}\left( {\tan x} \right) = \sec^{2}x\], \[\dfrac{\partial }{{\partial x}}\left( {{x^n}} \right) = n{x^{n - 1}}\] and chain rule for \[\dfrac{\partial }{{\partial y}}\left( {\tan\left( {y - ax} \right)} \right)\].
\[\dfrac{{\partial z}}{{\partial y}} = \left( {\sec^{2}\left( {y - ax} \right)\dfrac{\partial }{{\partial y}}\left( {y - ax} \right)} \right) + \left( {\dfrac{3}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}\dfrac{\partial }{{\partial y}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \sec^{2}\left( {y - ax} \right)\left( 1 \right) + \dfrac{3}{2}{\left( {y - ax} \right)^{\dfrac{1}{2}}}\left( 1 \right)\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \sec^{2}\left( {y - ax} \right) + \dfrac{3}{2}{\left( {y - ax} \right)^{\dfrac{1}{2}}}\]
Again, differentiate the above differential equation partially with respect to the variable \[y\].
\[\dfrac{\partial }{{\partial y}}\left( {\dfrac{{\partial z}}{{\partial y}}} \right) = \dfrac{\partial }{{\partial y}}\left( {\sec^{2}\left( {y - ax} \right) + \dfrac{3}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}} \right)\]
Apply the chain rule for \[\dfrac{\partial }{{\partial y}}\left( {\sec^{2}\left( {y - ax} \right)} \right)\].
\[\dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = \left( {2\sec\left( {y - ax} \right)\dfrac{\partial }{{\partial y}}\left( {\sec\left( {y - ax} \right)} \right) + \dfrac{3}{2}\left( {\dfrac{1}{{2\sqrt {y - ax} }}} \right)\dfrac{\partial }{{\partial y}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = \left( {2\sec\left( {y - ax} \right)\sec\left( {y - ax} \right)\tan\left( {y - ax} \right)\dfrac{\partial }{{\partial y}}\left( {y - ax} \right) + \dfrac{3}{2}\left( {\dfrac{1}{{2\sqrt {y - ax} }}} \right)\left( 1 \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = \left( {2\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right)\left( 1 \right) + \dfrac{3}{{4\sqrt {y - ax} }}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = 2\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right) + \dfrac{3}{{4\sqrt {y - ax} }}\] \[.....\left( 2 \right)\]
Now compare the equations \[\left( 1 \right)\], and \[\left( 2 \right)\].
We get,
\[\dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = {a^2}\dfrac{{{\partial ^2}z}}{{\partial {y^2}}}\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\tan x} \right) = \sec^{2}x\]
\[\dfrac{\partial }{{\partial x}}\left( {\sec x} \right) = \sec x \tan x\]
\[\dfrac{\partial }{{\partial x}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Product rule of partial differentiation: \[\dfrac{\partial }{{\partial x}}\left( {uv} \right) = u\dfrac{{\partial v}}{{\partial x}} + v\dfrac{{\partial u}}{{\partial x}}\]
Complete step by step solution:
The given trigonometric equation is \[z = \tan\left( {y - ax} \right) + {\left( {y - ax} \right)^{\dfrac{3}{2}}}\].
To Prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = {a^2}\dfrac{{{\partial ^2}u}}{{\partial {y^2}}}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( z \right) = \dfrac{\partial }{{\partial x}}\left( {\tan\left( {y - ax} \right) + {{\left( {y - ax} \right)}^{\dfrac{3}{2}}}} \right)\]
Apply the partial differentiation formulas \[\dfrac{\partial }{{\partial x}}\left( {\tan x} \right) = \sec^{2}x\], \[\dfrac{\partial }{{\partial x}}\left( {{x^n}} \right) = n{x^{n - 1}}\] and chain rule for \[\dfrac{\partial }{{\partial x}}\left( {\tan\left( {y - ax} \right)} \right)\].
\[\dfrac{{\partial z}}{{\partial x}} = \left( {\sec^{2}\left( {y - ax} \right)\dfrac{\partial }{{\partial x}}\left( {y - ax} \right)} \right) + \left( {\dfrac{3}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}\dfrac{\partial }{{\partial x}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = - a\sec^{2}\left( {y - ax} \right) - \dfrac{{3a}}{2}{\left( {y - ax} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = - \left( {a\sec^{2}\left( {y - ax} \right) + \dfrac{{3a}}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}} \right)\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial z}}{{\partial x}}} \right) = - \dfrac{\partial }{{\partial x}}\left( {a\sec^{2}\left( {y - ax} \right) + \dfrac{{3a}}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}} \right)\]
Apply the chain rule for \[\dfrac{\partial }{{\partial x}}\left( {a\sec^{2}\left( {y - ax} \right)} \right)\].
\[\dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( {2a\sec\left( {y - ax} \right)\dfrac{\partial }{{\partial x}}\left( {\sec\left( {y - ax} \right)} \right) + \dfrac{{3a}}{2}\left( {\dfrac{1}{{2\sqrt {y - ax} }}} \right)\dfrac{\partial }{{\partial x}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( {2a\sec\left( {y - ax} \right)\sec\left( {y - ax} \right)\tan\left( {y - ax} \right)\dfrac{\partial }{{\partial x}}\left( {y - ax} \right) + \dfrac{{3a}}{{4\sqrt {y - ax} }}\left( { - a} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( {2a\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right)\left( { - a} \right) - \dfrac{{3{a^2}}}{{4\sqrt {y - ax} }}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = - \left( { - 2{a^2}\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right) - \dfrac{{3{a^2}}}{{4\sqrt {y - ax} }}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = {a^2}\left( {2\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right) + \dfrac{3}{{4\sqrt {y - ax} }}} \right)\] \[.....\left( 1 \right)\]
Now differentiate the given equation partially with respect to the variable \[y\].
\[\dfrac{\partial }{{\partial y}}\left( z \right) = \dfrac{\partial }{{\partial y}}\left( {\tan\left( {y - ax} \right) + {{\left( {y - ax} \right)}^{\dfrac{3}{2}}}} \right)\]
Apply the partial differentiation formulas \[\dfrac{\partial }{{\partial x}}\left( {\tan x} \right) = \sec^{2}x\], \[\dfrac{\partial }{{\partial x}}\left( {{x^n}} \right) = n{x^{n - 1}}\] and chain rule for \[\dfrac{\partial }{{\partial y}}\left( {\tan\left( {y - ax} \right)} \right)\].
\[\dfrac{{\partial z}}{{\partial y}} = \left( {\sec^{2}\left( {y - ax} \right)\dfrac{\partial }{{\partial y}}\left( {y - ax} \right)} \right) + \left( {\dfrac{3}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}\dfrac{\partial }{{\partial y}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \sec^{2}\left( {y - ax} \right)\left( 1 \right) + \dfrac{3}{2}{\left( {y - ax} \right)^{\dfrac{1}{2}}}\left( 1 \right)\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \sec^{2}\left( {y - ax} \right) + \dfrac{3}{2}{\left( {y - ax} \right)^{\dfrac{1}{2}}}\]
Again, differentiate the above differential equation partially with respect to the variable \[y\].
\[\dfrac{\partial }{{\partial y}}\left( {\dfrac{{\partial z}}{{\partial y}}} \right) = \dfrac{\partial }{{\partial y}}\left( {\sec^{2}\left( {y - ax} \right) + \dfrac{3}{2}{{\left( {y - ax} \right)}^{\dfrac{1}{2}}}} \right)\]
Apply the chain rule for \[\dfrac{\partial }{{\partial y}}\left( {\sec^{2}\left( {y - ax} \right)} \right)\].
\[\dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = \left( {2\sec\left( {y - ax} \right)\dfrac{\partial }{{\partial y}}\left( {\sec\left( {y - ax} \right)} \right) + \dfrac{3}{2}\left( {\dfrac{1}{{2\sqrt {y - ax} }}} \right)\dfrac{\partial }{{\partial y}}\left( {y - ax} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = \left( {2\sec\left( {y - ax} \right)\sec\left( {y - ax} \right)\tan\left( {y - ax} \right)\dfrac{\partial }{{\partial y}}\left( {y - ax} \right) + \dfrac{3}{2}\left( {\dfrac{1}{{2\sqrt {y - ax} }}} \right)\left( 1 \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = \left( {2\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right)\left( 1 \right) + \dfrac{3}{{4\sqrt {y - ax} }}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}z}}{{\partial {y^2}}} = 2\sec^{2}\left( {y - ax} \right)\tan\left( {y - ax} \right) + \dfrac{3}{{4\sqrt {y - ax} }}\] \[.....\left( 2 \right)\]
Now compare the equations \[\left( 1 \right)\], and \[\left( 2 \right)\].
We get,
\[\dfrac{{{\partial ^2}z}}{{\partial {x^2}}} = {a^2}\dfrac{{{\partial ^2}z}}{{\partial {y^2}}}\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Students Also Read