
If $u={{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$, $v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ and $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$, then the curve $u+kv=0$ is
A. The same the straight line $u$
B. Different straight line
C. It is not a straight line
D. None of these
Answer
220.2k+ views
Hint: In this question, we are to find the resulting equation of the curve $u+kv=0$, on substituting the $u$ and $v$ values. Considering the given condition to a constant, we can simplify the given curve and extract the equation of a straight line from it.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
Complete step by step solution: Given that,
A curve with the equation is $u+kv=0$
Where
$u={{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$
$v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$
It is also given that,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$
Consider the above-given condition to a constant $c$. i.e.,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=c$
We can write
$\begin{align}
& \dfrac{{{a}_{1}}}{{{a}_{2}}}=c\Rightarrow {{a}_{2}}=\dfrac{{{a}_{1}}}{c} \\
& \dfrac{{{b}_{1}}}{{{b}_{2}}}=c\Rightarrow {{b}_{2}}=\dfrac{{{b}_{1}}}{c} \\
& \dfrac{{{c}_{1}}}{{{c}_{2}}}=c\Rightarrow {{c}_{2}}=\dfrac{{{c}_{1}}}{c} \\
\end{align}$
Then, substituting all these in the given curve, we get
\[\begin{align}
& u+kv=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k({{a}_{2}}x+{{b}_{2}}y+{{c}_{2}})=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k(\dfrac{{{a}_{1}}}{c}x+\dfrac{{{b}_{1}}}{c}y+\dfrac{{{c}_{1}}}{c})=0 \\
& {{a}_{1}}x\left( 1+\dfrac{k}{c} \right)+{{b}_{1}}y\left( 1+\dfrac{k}{c} \right)+{{c}_{1}}\left( 1+\dfrac{k}{c} \right)=0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1+\dfrac{k}{c} \right)\left( {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}} \right)=0 \\
& \Rightarrow {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0=u \\
\end{align}\]
Therefore, the obtained straight line is the same as the given straight line $u$.
Option ‘A’ is correct
Note: Here we may go wrong while taking a constant for the given condition. By substituting the given values and the straight lines in the curve $u+kv=0$, we get the straight line the same as the given one.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
Complete step by step solution: Given that,
A curve with the equation is $u+kv=0$
Where
$u={{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$
$v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$
It is also given that,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$
Consider the above-given condition to a constant $c$. i.e.,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=c$
We can write
$\begin{align}
& \dfrac{{{a}_{1}}}{{{a}_{2}}}=c\Rightarrow {{a}_{2}}=\dfrac{{{a}_{1}}}{c} \\
& \dfrac{{{b}_{1}}}{{{b}_{2}}}=c\Rightarrow {{b}_{2}}=\dfrac{{{b}_{1}}}{c} \\
& \dfrac{{{c}_{1}}}{{{c}_{2}}}=c\Rightarrow {{c}_{2}}=\dfrac{{{c}_{1}}}{c} \\
\end{align}$
Then, substituting all these in the given curve, we get
\[\begin{align}
& u+kv=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k({{a}_{2}}x+{{b}_{2}}y+{{c}_{2}})=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k(\dfrac{{{a}_{1}}}{c}x+\dfrac{{{b}_{1}}}{c}y+\dfrac{{{c}_{1}}}{c})=0 \\
& {{a}_{1}}x\left( 1+\dfrac{k}{c} \right)+{{b}_{1}}y\left( 1+\dfrac{k}{c} \right)+{{c}_{1}}\left( 1+\dfrac{k}{c} \right)=0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1+\dfrac{k}{c} \right)\left( {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}} \right)=0 \\
& \Rightarrow {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0=u \\
\end{align}\]
Therefore, the obtained straight line is the same as the given straight line $u$.
Option ‘A’ is correct
Note: Here we may go wrong while taking a constant for the given condition. By substituting the given values and the straight lines in the curve $u+kv=0$, we get the straight line the same as the given one.
Recently Updated Pages
Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

