
If $u={{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$, $v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ and $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$, then the curve $u+kv=0$ is
A. The same the straight line $u$
B. Different straight line
C. It is not a straight line
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the resulting equation of the curve $u+kv=0$, on substituting the $u$ and $v$ values. Considering the given condition to a constant, we can simplify the given curve and extract the equation of a straight line from it.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
Complete step by step solution: Given that,
A curve with the equation is $u+kv=0$
Where
$u={{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$
$v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$
It is also given that,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$
Consider the above-given condition to a constant $c$. i.e.,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=c$
We can write
$\begin{align}
& \dfrac{{{a}_{1}}}{{{a}_{2}}}=c\Rightarrow {{a}_{2}}=\dfrac{{{a}_{1}}}{c} \\
& \dfrac{{{b}_{1}}}{{{b}_{2}}}=c\Rightarrow {{b}_{2}}=\dfrac{{{b}_{1}}}{c} \\
& \dfrac{{{c}_{1}}}{{{c}_{2}}}=c\Rightarrow {{c}_{2}}=\dfrac{{{c}_{1}}}{c} \\
\end{align}$
Then, substituting all these in the given curve, we get
\[\begin{align}
& u+kv=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k({{a}_{2}}x+{{b}_{2}}y+{{c}_{2}})=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k(\dfrac{{{a}_{1}}}{c}x+\dfrac{{{b}_{1}}}{c}y+\dfrac{{{c}_{1}}}{c})=0 \\
& {{a}_{1}}x\left( 1+\dfrac{k}{c} \right)+{{b}_{1}}y\left( 1+\dfrac{k}{c} \right)+{{c}_{1}}\left( 1+\dfrac{k}{c} \right)=0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1+\dfrac{k}{c} \right)\left( {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}} \right)=0 \\
& \Rightarrow {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0=u \\
\end{align}\]
Therefore, the obtained straight line is the same as the given straight line $u$.
Option ‘A’ is correct
Note: Here we may go wrong while taking a constant for the given condition. By substituting the given values and the straight lines in the curve $u+kv=0$, we get the straight line the same as the given one.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
Complete step by step solution: Given that,
A curve with the equation is $u+kv=0$
Where
$u={{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$
$v={{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$
It is also given that,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$
Consider the above-given condition to a constant $c$. i.e.,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=c$
We can write
$\begin{align}
& \dfrac{{{a}_{1}}}{{{a}_{2}}}=c\Rightarrow {{a}_{2}}=\dfrac{{{a}_{1}}}{c} \\
& \dfrac{{{b}_{1}}}{{{b}_{2}}}=c\Rightarrow {{b}_{2}}=\dfrac{{{b}_{1}}}{c} \\
& \dfrac{{{c}_{1}}}{{{c}_{2}}}=c\Rightarrow {{c}_{2}}=\dfrac{{{c}_{1}}}{c} \\
\end{align}$
Then, substituting all these in the given curve, we get
\[\begin{align}
& u+kv=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k({{a}_{2}}x+{{b}_{2}}y+{{c}_{2}})=0 \\
& ({{a}_{1}}x+{{b}_{1}}y+{{c}_{1}})+k(\dfrac{{{a}_{1}}}{c}x+\dfrac{{{b}_{1}}}{c}y+\dfrac{{{c}_{1}}}{c})=0 \\
& {{a}_{1}}x\left( 1+\dfrac{k}{c} \right)+{{b}_{1}}y\left( 1+\dfrac{k}{c} \right)+{{c}_{1}}\left( 1+\dfrac{k}{c} \right)=0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1+\dfrac{k}{c} \right)\left( {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}} \right)=0 \\
& \Rightarrow {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0=u \\
\end{align}\]
Therefore, the obtained straight line is the same as the given straight line $u$.
Option ‘A’ is correct
Note: Here we may go wrong while taking a constant for the given condition. By substituting the given values and the straight lines in the curve $u+kv=0$, we get the straight line the same as the given one.
Recently Updated Pages
If the points P1 and P2 represent two complex numbers class 11 maths JEE_Advanced

If R and C denote the set of real numbers and complex class 11 maths JEE_Advanced

If complex numbers z1 z2 and z3 represent the vertices class 11 maths JEE_Advanced

Let S be a set of all the distinct numbers of the form class 11 maths JEE_Advanced

Find how many numbers can be formed with the digits class 11 maths JEE_Advanced

The equation of the lines on which the perpendiculars class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

