
If \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\], then show that \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\].
Answer
216.3k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[x\] and calculate the second derivative. Follow these steps to calculate the second derivative of the given equation with respect to \[y\], and \[z\]. In the end, add the values of all three second-order derivatives and simplify the equation to reach the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given equation is \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\].
To prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Take square root on the both sides of the above equation.
We get,
\[u = \dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( u \right) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}} \right)\]
Apply the exponent rule.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \dfrac{1}{2}}}} \right)\]
Apply the chain rule and \[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{{2{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}\dfrac{\partial }{{\partial x}}\left( {{x^2} + {y^2} + {z^2}} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {\left( {{u^2}} \right)^{\dfrac{3}{2}}}\left( x \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {u^3}x\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial u}}{{\partial x}}} \right) = \dfrac{\partial }{{\partial x}}\left( { - {u^3}x} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \dfrac{\partial }{{\partial x}}\left( {{u^3}x} \right)\]
Apply the product rule.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3}\dfrac{\partial }{{\partial x}}\left( x \right) + x\dfrac{\partial }{{\partial x}}\left( {{u^3}} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\dfrac{{\partial u}}{{\partial x}}} \right)\]
Substitute \[\dfrac{{\partial u}}{{\partial x}} = - {u^3}x\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\left( { - {u^3}x} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} - 3{x^2}{u^5}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = 3{x^2}{u^5} - {u^3}\] \[.....\left( 1 \right)\]
Similarly, double differentiate the given equation with respect to the variables \[y\] and \[z\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {y^2}}} = 3{y^2}{u^5} - {u^3}\] \[.....\left( 2 \right)\]
And \[\dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{z^2}{u^5} - {u^3}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{x^2}{u^5} - {u^3} + 3{y^2}{u^5} - {u^3} + 3{z^2}{u^5} - {u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{x^2} + {y^2} + {z^2}} \right) - 3{u^3}\]
Resubstitute the value \[\left( {{x^2} + {y^2} + {z^2}} \right) = {u^{ - 2}}\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{u^{ - 2}}} \right) - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^3} - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given equation is \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\].
To prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Take square root on the both sides of the above equation.
We get,
\[u = \dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( u \right) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}} \right)\]
Apply the exponent rule.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \dfrac{1}{2}}}} \right)\]
Apply the chain rule and \[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{{2{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}\dfrac{\partial }{{\partial x}}\left( {{x^2} + {y^2} + {z^2}} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {\left( {{u^2}} \right)^{\dfrac{3}{2}}}\left( x \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {u^3}x\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial u}}{{\partial x}}} \right) = \dfrac{\partial }{{\partial x}}\left( { - {u^3}x} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \dfrac{\partial }{{\partial x}}\left( {{u^3}x} \right)\]
Apply the product rule.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3}\dfrac{\partial }{{\partial x}}\left( x \right) + x\dfrac{\partial }{{\partial x}}\left( {{u^3}} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\dfrac{{\partial u}}{{\partial x}}} \right)\]
Substitute \[\dfrac{{\partial u}}{{\partial x}} = - {u^3}x\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\left( { - {u^3}x} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} - 3{x^2}{u^5}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = 3{x^2}{u^5} - {u^3}\] \[.....\left( 1 \right)\]
Similarly, double differentiate the given equation with respect to the variables \[y\] and \[z\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {y^2}}} = 3{y^2}{u^5} - {u^3}\] \[.....\left( 2 \right)\]
And \[\dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{z^2}{u^5} - {u^3}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{x^2}{u^5} - {u^3} + 3{y^2}{u^5} - {u^3} + 3{z^2}{u^5} - {u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{x^2} + {y^2} + {z^2}} \right) - 3{u^3}\]
Resubstitute the value \[\left( {{x^2} + {y^2} + {z^2}} \right) = {u^{ - 2}}\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{u^{ - 2}}} \right) - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^3} - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

