
If \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\], then show that \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\].
Answer
162.3k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[x\] and calculate the second derivative. Follow these steps to calculate the second derivative of the given equation with respect to \[y\], and \[z\]. In the end, add the values of all three second-order derivatives and simplify the equation to reach the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given equation is \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\].
To prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Take square root on the both sides of the above equation.
We get,
\[u = \dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( u \right) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}} \right)\]
Apply the exponent rule.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \dfrac{1}{2}}}} \right)\]
Apply the chain rule and \[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{{2{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}\dfrac{\partial }{{\partial x}}\left( {{x^2} + {y^2} + {z^2}} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {\left( {{u^2}} \right)^{\dfrac{3}{2}}}\left( x \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {u^3}x\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial u}}{{\partial x}}} \right) = \dfrac{\partial }{{\partial x}}\left( { - {u^3}x} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \dfrac{\partial }{{\partial x}}\left( {{u^3}x} \right)\]
Apply the product rule.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3}\dfrac{\partial }{{\partial x}}\left( x \right) + x\dfrac{\partial }{{\partial x}}\left( {{u^3}} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\dfrac{{\partial u}}{{\partial x}}} \right)\]
Substitute \[\dfrac{{\partial u}}{{\partial x}} = - {u^3}x\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\left( { - {u^3}x} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} - 3{x^2}{u^5}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = 3{x^2}{u^5} - {u^3}\] \[.....\left( 1 \right)\]
Similarly, double differentiate the given equation with respect to the variables \[y\] and \[z\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {y^2}}} = 3{y^2}{u^5} - {u^3}\] \[.....\left( 2 \right)\]
And \[\dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{z^2}{u^5} - {u^3}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{x^2}{u^5} - {u^3} + 3{y^2}{u^5} - {u^3} + 3{z^2}{u^5} - {u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{x^2} + {y^2} + {z^2}} \right) - 3{u^3}\]
Resubstitute the value \[\left( {{x^2} + {y^2} + {z^2}} \right) = {u^{ - 2}}\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{u^{ - 2}}} \right) - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^3} - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given equation is \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\].
To prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Take square root on the both sides of the above equation.
We get,
\[u = \dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( u \right) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}} \right)\]
Apply the exponent rule.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \dfrac{1}{2}}}} \right)\]
Apply the chain rule and \[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{{2{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}\dfrac{\partial }{{\partial x}}\left( {{x^2} + {y^2} + {z^2}} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {\left( {{u^2}} \right)^{\dfrac{3}{2}}}\left( x \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {u^3}x\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial u}}{{\partial x}}} \right) = \dfrac{\partial }{{\partial x}}\left( { - {u^3}x} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \dfrac{\partial }{{\partial x}}\left( {{u^3}x} \right)\]
Apply the product rule.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3}\dfrac{\partial }{{\partial x}}\left( x \right) + x\dfrac{\partial }{{\partial x}}\left( {{u^3}} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\dfrac{{\partial u}}{{\partial x}}} \right)\]
Substitute \[\dfrac{{\partial u}}{{\partial x}} = - {u^3}x\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\left( { - {u^3}x} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} - 3{x^2}{u^5}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = 3{x^2}{u^5} - {u^3}\] \[.....\left( 1 \right)\]
Similarly, double differentiate the given equation with respect to the variables \[y\] and \[z\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {y^2}}} = 3{y^2}{u^5} - {u^3}\] \[.....\left( 2 \right)\]
And \[\dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{z^2}{u^5} - {u^3}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{x^2}{u^5} - {u^3} + 3{y^2}{u^5} - {u^3} + 3{z^2}{u^5} - {u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{x^2} + {y^2} + {z^2}} \right) - 3{u^3}\]
Resubstitute the value \[\left( {{x^2} + {y^2} + {z^2}} \right) = {u^{ - 2}}\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{u^{ - 2}}} \right) - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^3} - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Students Also Read