
If \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] , then what is the value of \[x{u_x} + y{u_y}\]?
A. \[u\]
B. \[2u\]
C. \[3u\]
D. \[\dfrac{u}{3}\]
Answer
231.6k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[y\]. Substitute both differential equations in the given expression \[x{u_x} + y{u_y}\] to get the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Let’s differentiate the above equation partially.
Consider \[x\] as one term and \[y{}^2ta{n^{ - 1}}\left( {\dfrac{y}{x}} \right)\] as other term.
Differentiate the above given equation partially with respect to the variable \[x\].
Apply the product rule of differentiation.
\[{u_x} = \left( {\dfrac{\partial }{{\partial x}}x} \right)y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x\left( {\dfrac{\partial }{{\partial x}}y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 1 \right)\]
Now differentiate the above given equation partially with respect to the variable \[y\].
Consider \[y{}^2\] as one term and \[x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] as other term.
Apply the product rule of differentiation.
\[{u_y} = \left({\dfrac{\partial }{{\partial y}}y{}^2} \right)x\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + {y^2}\left( {\dfrac{\partial }{{\partial y}}x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x{u_x} + y{u_y}\].
We get,
\[x{u_x} + y{u_y} = x\left[ {y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}} \right] + y\left[ {2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}} \right]\]
Simplify the above equation.
\[x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}} + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3u\] \[\left[ {\because u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right]\]
Hence the correct option is C.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Let’s differentiate the above equation partially.
Consider \[x\] as one term and \[y{}^2ta{n^{ - 1}}\left( {\dfrac{y}{x}} \right)\] as other term.
Differentiate the above given equation partially with respect to the variable \[x\].
Apply the product rule of differentiation.
\[{u_x} = \left( {\dfrac{\partial }{{\partial x}}x} \right)y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x\left( {\dfrac{\partial }{{\partial x}}y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 1 \right)\]
Now differentiate the above given equation partially with respect to the variable \[y\].
Consider \[y{}^2\] as one term and \[x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] as other term.
Apply the product rule of differentiation.
\[{u_y} = \left({\dfrac{\partial }{{\partial y}}y{}^2} \right)x\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + {y^2}\left( {\dfrac{\partial }{{\partial y}}x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x{u_x} + y{u_y}\].
We get,
\[x{u_x} + y{u_y} = x\left[ {y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}} \right] + y\left[ {2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}} \right]\]
Simplify the above equation.
\[x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}} + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3u\] \[\left[ {\because u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right]\]
Hence the correct option is C.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

