
If \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] , then what is the value of \[x{u_x} + y{u_y}\]?
A. \[u\]
B. \[2u\]
C. \[3u\]
D. \[\dfrac{u}{3}\]
Answer
164.4k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[y\]. Substitute both differential equations in the given expression \[x{u_x} + y{u_y}\] to get the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Let’s differentiate the above equation partially.
Consider \[x\] as one term and \[y{}^2ta{n^{ - 1}}\left( {\dfrac{y}{x}} \right)\] as other term.
Differentiate the above given equation partially with respect to the variable \[x\].
Apply the product rule of differentiation.
\[{u_x} = \left( {\dfrac{\partial }{{\partial x}}x} \right)y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x\left( {\dfrac{\partial }{{\partial x}}y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 1 \right)\]
Now differentiate the above given equation partially with respect to the variable \[y\].
Consider \[y{}^2\] as one term and \[x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] as other term.
Apply the product rule of differentiation.
\[{u_y} = \left({\dfrac{\partial }{{\partial y}}y{}^2} \right)x\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + {y^2}\left( {\dfrac{\partial }{{\partial y}}x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x{u_x} + y{u_y}\].
We get,
\[x{u_x} + y{u_y} = x\left[ {y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}} \right] + y\left[ {2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}} \right]\]
Simplify the above equation.
\[x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}} + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3u\] \[\left[ {\because u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right]\]
Hence the correct option is C.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Let’s differentiate the above equation partially.
Consider \[x\] as one term and \[y{}^2ta{n^{ - 1}}\left( {\dfrac{y}{x}} \right)\] as other term.
Differentiate the above given equation partially with respect to the variable \[x\].
Apply the product rule of differentiation.
\[{u_x} = \left( {\dfrac{\partial }{{\partial x}}x} \right)y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x\left( {\dfrac{\partial }{{\partial x}}y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 1 \right)\]
Now differentiate the above given equation partially with respect to the variable \[y\].
Consider \[y{}^2\] as one term and \[x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] as other term.
Apply the product rule of differentiation.
\[{u_y} = \left({\dfrac{\partial }{{\partial y}}y{}^2} \right)x\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + {y^2}\left( {\dfrac{\partial }{{\partial y}}x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x{u_x} + y{u_y}\].
We get,
\[x{u_x} + y{u_y} = x\left[ {y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}} \right] + y\left[ {2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}} \right]\]
Simplify the above equation.
\[x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}} + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3u\] \[\left[ {\because u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right]\]
Hence the correct option is C.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Students Also Read