
If \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] , then what is the value of \[x{u_x} + y{u_y}\]?
A. \[u\]
B. \[2u\]
C. \[3u\]
D. \[\dfrac{u}{3}\]
Answer
218.1k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[y\]. Substitute both differential equations in the given expression \[x{u_x} + y{u_y}\] to get the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Let’s differentiate the above equation partially.
Consider \[x\] as one term and \[y{}^2ta{n^{ - 1}}\left( {\dfrac{y}{x}} \right)\] as other term.
Differentiate the above given equation partially with respect to the variable \[x\].
Apply the product rule of differentiation.
\[{u_x} = \left( {\dfrac{\partial }{{\partial x}}x} \right)y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x\left( {\dfrac{\partial }{{\partial x}}y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 1 \right)\]
Now differentiate the above given equation partially with respect to the variable \[y\].
Consider \[y{}^2\] as one term and \[x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] as other term.
Apply the product rule of differentiation.
\[{u_y} = \left({\dfrac{\partial }{{\partial y}}y{}^2} \right)x\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + {y^2}\left( {\dfrac{\partial }{{\partial y}}x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x{u_x} + y{u_y}\].
We get,
\[x{u_x} + y{u_y} = x\left[ {y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}} \right] + y\left[ {2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}} \right]\]
Simplify the above equation.
\[x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}} + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3u\] \[\left[ {\because u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right]\]
Hence the correct option is C.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right) = \dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Let’s differentiate the above equation partially.
Consider \[x\] as one term and \[y{}^2ta{n^{ - 1}}\left( {\dfrac{y}{x}} \right)\] as other term.
Differentiate the above given equation partially with respect to the variable \[x\].
Apply the product rule of differentiation.
\[{u_x} = \left( {\dfrac{\partial }{{\partial x}}x} \right)y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x\left( {\dfrac{\partial }{{\partial x}}y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( { - \dfrac{y}{{{x^2}}}} \right)} \right)\]
\[ \Rightarrow {u_x} = y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 1 \right)\]
Now differentiate the above given equation partially with respect to the variable \[y\].
Consider \[y{}^2\] as one term and \[x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\] as other term.
Apply the product rule of differentiation.
\[{u_y} = \left({\dfrac{\partial }{{\partial y}}y{}^2} \right)x\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + {y^2}\left( {\dfrac{\partial }{{\partial y}}x\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right)\]
Apply the chain rule for the differentiation of the second term.
\[{u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{1}{{1 + {{\left( {\dfrac{y}{x}} \right)}^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + x{y^2}\left( {\dfrac{{{x^2}}}{{{x^2} + {y^2}}}\left( {\dfrac{1}{x}} \right)} \right)\]
\[ \Rightarrow {u_y} = 2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x{u_x} + y{u_y}\].
We get,
\[x{u_x} + y{u_y} = x\left[ {y{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{x{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}} \right] + y\left[ {2xy\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^2}}}{{\left( {{x^2} + {y^2}} \right)}}} \right]\]
Simplify the above equation.
\[x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) - \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}} + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + \dfrac{{{x^2}{y^3}}}{{\left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow x{u_x} + y{u_y} = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right) + 2x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3x{y^2}\tan^{ - 1}\left( {\dfrac{y}{x}} \right)\]
\[ \Rightarrow x{u_x} + y{u_y} = 3u\] \[\left[ {\because u = xy{}^2\tan^{ - 1}\left( {\dfrac{y}{x}} \right)} \right]\]
Hence the correct option is C.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
JEE Advanced Physics Syllabus 2026 – FREE PDF Download

JEE Advanced Chemistry Syllabus 2026 - Free PDF Download

JEE Advanced 2026 Syllabus for Maths- Download FREE PDF

TS EAMCET Seat Allotment

SRMJEEE 2023

TS EAMCET Application form 2023 & Exam Dates

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

