
If the angles of a triangle \[ABC\] are in arithmetic progression, then which of the following statement is true?
A. \[{c^2} = {a^2} + {b^2} - ab\]
B. \[{b^2} = {a^2} + {c^2} - ac\]
C. \[{a^2} = {b^2} + {c^2} - ac\]
D. \[{b^2} = {a^2} + {c^2}\]
Answer
161.1k+ views
Hint: Here, the angles of the given triangle are in the arithmetic progression. We will use the rule of the arithmetic progression for the 3 numbers in an AP to calculate the value of the middle angle. Then, we will apply the law of cosines to that angle. In the end, solve the equation to get the required answer.
Formula used:
If the three numbers \[a, b\] and \[c\] are in the arithmetic progression, then \[ b = \dfrac{{a + c}}{2}\].
Law of cosines: \[\cos B = \dfrac{{{c^2} + a^{2} - {b^2}}}{{2ac}}\].
Complete step by step solution:
Given:
The angles of the triangle \[ABC\] are in the arithmetic progression.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
So, \[A + B + C = 180^ {\circ }\] \[.....\left( 1 \right)\]
Since the angles of the triangle are in the arithmetic progression.
We get,
\[B = \dfrac{{A + C}}{2}\]
Substitute the value of \[A + C\] by using the equation \[\left( 1 \right)\].
\[B = \dfrac{{180^ {\circ } - B}}{2}\]
\[ \Rightarrow 3B = 180^ {\circ }\]
\[ \Rightarrow B = 60^ {\circ }\]
Now apply the laws of cosines to angle B.
We get,
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
Substitute the value of the angle in the above equation.
\[\cos 60^ {\circ } = \dfrac{{a{}^2 + {c^2} - {b^2}}}{{2ac}}\]
\[ \Rightarrow \dfrac{1}{2} = \dfrac{{a{}^2 + {c^2} - {b^2}}}{{2ac}}\]
\[ \Rightarrow ac = a{}^2 + {c^2} - {b^2}\]
\[ \Rightarrow {b^2} = a{}^2 + {c^2} - ac\]
Hence the correct option is B.
Note: While solving the question keep in mind that if the numbers are in the arithmetic progression, then the difference between each consecutive term is a constant value. And if the three terms are in the arithmetic progression, then the sum of the first and last terms is twice the middle term.
Formula used:
If the three numbers \[a, b\] and \[c\] are in the arithmetic progression, then \[ b = \dfrac{{a + c}}{2}\].
Law of cosines: \[\cos B = \dfrac{{{c^2} + a^{2} - {b^2}}}{{2ac}}\].
Complete step by step solution:
Given:
The angles of the triangle \[ABC\] are in the arithmetic progression.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
So, \[A + B + C = 180^ {\circ }\] \[.....\left( 1 \right)\]
Since the angles of the triangle are in the arithmetic progression.
We get,
\[B = \dfrac{{A + C}}{2}\]
Substitute the value of \[A + C\] by using the equation \[\left( 1 \right)\].
\[B = \dfrac{{180^ {\circ } - B}}{2}\]
\[ \Rightarrow 3B = 180^ {\circ }\]
\[ \Rightarrow B = 60^ {\circ }\]
Now apply the laws of cosines to angle B.
We get,
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
Substitute the value of the angle in the above equation.
\[\cos 60^ {\circ } = \dfrac{{a{}^2 + {c^2} - {b^2}}}{{2ac}}\]
\[ \Rightarrow \dfrac{1}{2} = \dfrac{{a{}^2 + {c^2} - {b^2}}}{{2ac}}\]
\[ \Rightarrow ac = a{}^2 + {c^2} - {b^2}\]
\[ \Rightarrow {b^2} = a{}^2 + {c^2} - ac\]
Hence the correct option is B.
Note: While solving the question keep in mind that if the numbers are in the arithmetic progression, then the difference between each consecutive term is a constant value. And if the three terms are in the arithmetic progression, then the sum of the first and last terms is twice the middle term.
Recently Updated Pages
The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

JEE Advanced 2021 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced Study Plan 2025: Expert Tips and Preparation Guide

JEE Advanced 2022 Physics Question Paper 2 with Solutions

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
