
If \[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\], \[y\left( 0 \right) = 1\], then find the value of \[y\left( {\dfrac{\pi }{2}} \right)\].
A. 1
B. \[\dfrac{1}{2}\]
C. \[\dfrac{1}{3}\]
D. \[\dfrac{1}{4}\]
Answer
232.8k+ views
Hint: First we have to solve the given differential equation. To solve the differential equation we will separate the variables of the differential equation and integrate them. Then substitute the initial condition to find the value of the integrating constant. Then substitute \[x = \dfrac{\pi }{2}\] in the solution to calculate \[y\left( {\dfrac{\pi }{2}} \right)\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

