
If \[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\], \[y\left( 0 \right) = 1\], then find the value of \[y\left( {\dfrac{\pi }{2}} \right)\].
A. 1
B. \[\dfrac{1}{2}\]
C. \[\dfrac{1}{3}\]
D. \[\dfrac{1}{4}\]
Answer
162.6k+ views
Hint: First we have to solve the given differential equation. To solve the differential equation we will separate the variables of the differential equation and integrate them. Then substitute the initial condition to find the value of the integrating constant. Then substitute \[x = \dfrac{\pi }{2}\] in the solution to calculate \[y\left( {\dfrac{\pi }{2}} \right)\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
