
If \[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\], \[y\left( 0 \right) = 1\], then find the value of \[y\left( {\dfrac{\pi }{2}} \right)\].
A. 1
B. \[\dfrac{1}{2}\]
C. \[\dfrac{1}{3}\]
D. \[\dfrac{1}{4}\]
Answer
218.1k+ views
Hint: First we have to solve the given differential equation. To solve the differential equation we will separate the variables of the differential equation and integrate them. Then substitute the initial condition to find the value of the integrating constant. Then substitute \[x = \dfrac{\pi }{2}\] in the solution to calculate \[y\left( {\dfrac{\pi }{2}} \right)\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

Revision Notes on Chemical Kinetics for JEE Advanced 2026 - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

