
If \[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\], \[y\left( 0 \right) = 1\], then find the value of \[y\left( {\dfrac{\pi }{2}} \right)\].
A. 1
B. \[\dfrac{1}{2}\]
C. \[\dfrac{1}{3}\]
D. \[\dfrac{1}{4}\]
Answer
164.4k+ views
Hint: First we have to solve the given differential equation. To solve the differential equation we will separate the variables of the differential equation and integrate them. Then substitute the initial condition to find the value of the integrating constant. Then substitute \[x = \dfrac{\pi }{2}\] in the solution to calculate \[y\left( {\dfrac{\pi }{2}} \right)\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Formula Used: Integrating formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Differentiate formula:
\[\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta \]
Complete step by step solution: Given differential equation is:
\[\left( {\dfrac{{2 + \sin x}}{{1 + y}}} \right)\dfrac{{dy}}{{dx}} = - \cos x\]
Now separate the variable of the given differential equation:
\[ \Rightarrow \dfrac{{dy}}{{1 + y}} = - \dfrac{{\cos x}}{{2 + \sin x}}dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} = - \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} \]
\[ \Rightarrow \int {\dfrac{{dy}}{{1 + y}}} + \int {\dfrac{{\cos x}}{{2 + \sin x}}dx} = 0\] …..(1)
Assume that, \[1 + y = z\] and \[2 + \sin x = t\]
Differentiate both sides:
\[dy = dz\] and \[\cos xdx = dt\]
Now we will substitute \[1 + y = z\], \[2 + \sin x = t\], \[dy = dz\] and \[\cos xdx = dt\] in equation (i)
\[ \Rightarrow \int {\dfrac{{dz}}{z}} + \int {\dfrac{{dt}}{t}} = 0\]
Now applying integration formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[ \Rightarrow \log z + \log t = \log c\]
Substitute the value of z and t:
\[ \Rightarrow \log \left( {1 + y} \right) + \log \left( {2 + \sin x} \right) = \log c\]
Apply product rule of logarithm:
\[ \Rightarrow \log \left( {1 + y} \right)\left( {2 + \sin x} \right) = \log c\]
Applying anti log formula:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = c\] ….(ii)
Substitute x = 0 and y = 1
\[ \Rightarrow \left( {1 + 1} \right)\left( {2 + \sin 0} \right) = c\]
\[ \Rightarrow 4 = c\]
Substitute c= 4 in equation (ii)
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin x} \right) = 4\]
Now substitute \[x = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)\left( {2 + 1} \right) = 4\]
\[ \Rightarrow \left( {1 + y} \right)3 = 4\]
Divide both sides by 3:
\[ \Rightarrow \left( {1 + y} \right) = \dfrac{4}{3}\]
\[ \Rightarrow y = \dfrac{4}{3} - 1\]
\[ \Rightarrow y = \dfrac{1}{3}\]
Option ‘C’ is correct
Note: Student often do mistake to differentiate \[\sin x\]. They calculate that the differentiate of \[\sin x\] is \[ - \cos x\] which is incorrect. The differentiate of \[\sin x\] is \[\cos x\].
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
