
If \[f\left( x \right) = 5{\log _5}x\], then find the value of \[{f^{ - 1}}\left( {\alpha - \beta } \right)\] where \[\alpha ,\beta \in R\].
A. \[{f^{ - 1}}\left( \alpha \right) - {f^{ - 1}}\left( \beta \right)\]
B. \[\dfrac{{{f^{ - 1}}\left( \alpha \right)}}{{{f^{ - 1}}\left( \beta \right)}}\]
C. \[\dfrac{1}{{f\left( {\alpha - \beta } \right)}}\]
D. \[\dfrac{1}{{f\left( \alpha \right) - f\left( \beta \right)}}\]
Answer
216k+ views
Hint: Here, a logarithmic function is given. First, consider the given function as \[y = 5{\log _5}x\]. Then, solve the equation and find the value of \[x\] in terms of \[y\]. After that, calculate the value of \[{f^{ - 1}}\left( x \right)\]. In the end, substitute \[x = \alpha - \beta \] in the equation of \[{f^{ - 1}}\left( x \right)\] and solve it to get the required answer.
Formula Used: \[{e^{{{\log }_e}x}} = x\]
\[\dfrac{{a - b}}{c} = \dfrac{a}{c} - \dfrac{b}{c}\]
Complete step by step solution: The given function is \[f\left( x \right) = 5{\log _5}x\].
Let’s simplify the given function.
Consider,
\[y = 5{\log _5}x\]
\[ \Rightarrow \dfrac{y}{5} = {\log _5}x\]
Now take both sides as the exponent of the number 5.
\[ \Rightarrow {5^{\dfrac{y}{5}}} = {5^{{{\log }_5}x}}\]
Apply the exponent rule of logarithm \[{e^{{{\log }_e}x}} = x\] on the right-hand side.
\[ \Rightarrow {5^{\dfrac{y}{5}}} = x\]
So, we get
\[{f^{ - 1}}\left( x \right) = {5^{\dfrac{x}{5}}}\] \[.....\left( 1 \right)\]
Now substitute \[x = \alpha - \beta \] in the above equation.
\[{f^{ - 1}}\left( {\alpha - \beta } \right) = {5^{\dfrac{{\alpha - \beta }}{5}}}\]
Solve the right-hand side.
\[{f^{ - 1}}\left( {\alpha - \beta } \right) = {5^{\left( {\dfrac{\alpha }{5} - \dfrac{\beta }{5}} \right)}}\]
Apply the exponent rule.
\[{f^{ - 1}}\left( {\alpha - \beta } \right) = {5^{\left( {\dfrac{\alpha }{5}} \right)}} \times {5^{\left( {\dfrac{{ - \beta }}{5}} \right)}}\]
\[ \Rightarrow {f^{ - 1}}\left( {\alpha - \beta } \right) = \dfrac{{{5^{\left( {\dfrac{\alpha }{5}} \right)}}}}{{{5^{\left( {\dfrac{\beta }{5}} \right)}}}}\]
Now compare the right-hand side with the equation \[\left( 1 \right)\].
\[ \Rightarrow {f^{ - 1}}\left( {\alpha - \beta } \right) = \dfrac{{{f^{ - 1}}\left( \alpha \right)}}{{{f^{ - 1}}\left( \beta \right)}}\]
Option ‘B’ is correct
Note: Students often do mistake while solving the functions with logarithm. To simplify the function, take the function as the exponent of a number. Where the number is the base of the given logarithm.
Formula Used: \[{e^{{{\log }_e}x}} = x\]
\[\dfrac{{a - b}}{c} = \dfrac{a}{c} - \dfrac{b}{c}\]
Complete step by step solution: The given function is \[f\left( x \right) = 5{\log _5}x\].
Let’s simplify the given function.
Consider,
\[y = 5{\log _5}x\]
\[ \Rightarrow \dfrac{y}{5} = {\log _5}x\]
Now take both sides as the exponent of the number 5.
\[ \Rightarrow {5^{\dfrac{y}{5}}} = {5^{{{\log }_5}x}}\]
Apply the exponent rule of logarithm \[{e^{{{\log }_e}x}} = x\] on the right-hand side.
\[ \Rightarrow {5^{\dfrac{y}{5}}} = x\]
So, we get
\[{f^{ - 1}}\left( x \right) = {5^{\dfrac{x}{5}}}\] \[.....\left( 1 \right)\]
Now substitute \[x = \alpha - \beta \] in the above equation.
\[{f^{ - 1}}\left( {\alpha - \beta } \right) = {5^{\dfrac{{\alpha - \beta }}{5}}}\]
Solve the right-hand side.
\[{f^{ - 1}}\left( {\alpha - \beta } \right) = {5^{\left( {\dfrac{\alpha }{5} - \dfrac{\beta }{5}} \right)}}\]
Apply the exponent rule.
\[{f^{ - 1}}\left( {\alpha - \beta } \right) = {5^{\left( {\dfrac{\alpha }{5}} \right)}} \times {5^{\left( {\dfrac{{ - \beta }}{5}} \right)}}\]
\[ \Rightarrow {f^{ - 1}}\left( {\alpha - \beta } \right) = \dfrac{{{5^{\left( {\dfrac{\alpha }{5}} \right)}}}}{{{5^{\left( {\dfrac{\beta }{5}} \right)}}}}\]
Now compare the right-hand side with the equation \[\left( 1 \right)\].
\[ \Rightarrow {f^{ - 1}}\left( {\alpha - \beta } \right) = \dfrac{{{f^{ - 1}}\left( \alpha \right)}}{{{f^{ - 1}}\left( \beta \right)}}\]
Option ‘B’ is correct
Note: Students often do mistake while solving the functions with logarithm. To simplify the function, take the function as the exponent of a number. Where the number is the base of the given logarithm.
Recently Updated Pages
Haryana B.Tech Counselling 2023: Seat Allotment Procedure

IIT Ropar Cutoff 2025: Expected Ranks for CSE, Mechanical, Electrical, OBC & More

JEE Principles Related to Practical Chemistry important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Main Surface Chemistry – Explanation, Analysis Techniques and Applications

Difference Between Asteroid and Comet

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

