
If \[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\] and \[ab=1\], then $a$ and $b$are the roots of the equation
A. \[{{x}^{2}}+4x-1=0\]
B. \[{{x}^{2}}-4x-1=0\]
C. \[{{x}^{2}}+4x+1=0\]
D. \[{{x}^{2}}-4x+1=0\]
Answer
163.5k+ views
Hint: In this question, we have to find the equation that is formed by the roots $a$ and $b$ where the root $a$ is the sum of the given series. The root $b$ is obtained by the given condition. Since the given series is a geometric series, we can find the sum of the infinite G.P for $a$ value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - Common ratio.
The sum of the infinite G.P is calculated by
${{S}_{\infty }}=\dfrac{a}{1-r}$
Here ${{S}_{\infty }}$ - Sum of the infinite terms of the series
The quadratic equation formed by two roots $a$ and $b$ is
$(x-a)(x-b)=0$
Complete step by step solution: Given series is
\[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\]
This is a geometric series. So, the sum of the $n$ terms is
\[\begin{align}
& a=\dfrac{1}{1-\left( \sqrt{3}-1 \right)} \\
& \Rightarrow a=\dfrac{1}{2-\sqrt{3}} \\
\end{align}\]
To simplify this complex number $2-\sqrt{3}$, multiplying and dividing this by its conjugate $2+\sqrt{3}$.
Then, we get
\[\begin{align}
& a=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\
& \text{ }=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
\end{align}\]
But we have \[ab=1\]. From this, we get
\[\begin{align}
& ab=1 \\
& \Rightarrow b=\dfrac{1}{a} \\
\end{align}\]
On substituting $a$ value, we get
\[\begin{align}
& b=\dfrac{1}{a} \\
& \text{ }=\dfrac{1}{2+\sqrt{3}} \\
\end{align}\]
Since the obtained value is a complex number, we need to multiply and divide this by its complex conjugate.
I.e.,
\[\begin{align}
& b=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \text{ }=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3} \\
\end{align}\]
Since we have the roots $a$ and $b$, the required equation is
\[\begin{align}
& (x-a)(x-b)=0 \\
& \Rightarrow (x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0 \\
& \Rightarrow \left( {{(x-2)}^{2}}-{{(\sqrt{3})}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}-4x+4-3=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we need to use the complex conjugates for simplifying the obtained complex numbers. So, that we can easily frame the required equation.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - Common ratio.
The sum of the infinite G.P is calculated by
${{S}_{\infty }}=\dfrac{a}{1-r}$
Here ${{S}_{\infty }}$ - Sum of the infinite terms of the series
The quadratic equation formed by two roots $a$ and $b$ is
$(x-a)(x-b)=0$
Complete step by step solution: Given series is
\[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\]
This is a geometric series. So, the sum of the $n$ terms is
\[\begin{align}
& a=\dfrac{1}{1-\left( \sqrt{3}-1 \right)} \\
& \Rightarrow a=\dfrac{1}{2-\sqrt{3}} \\
\end{align}\]
To simplify this complex number $2-\sqrt{3}$, multiplying and dividing this by its conjugate $2+\sqrt{3}$.
Then, we get
\[\begin{align}
& a=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\
& \text{ }=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
\end{align}\]
But we have \[ab=1\]. From this, we get
\[\begin{align}
& ab=1 \\
& \Rightarrow b=\dfrac{1}{a} \\
\end{align}\]
On substituting $a$ value, we get
\[\begin{align}
& b=\dfrac{1}{a} \\
& \text{ }=\dfrac{1}{2+\sqrt{3}} \\
\end{align}\]
Since the obtained value is a complex number, we need to multiply and divide this by its complex conjugate.
I.e.,
\[\begin{align}
& b=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \text{ }=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3} \\
\end{align}\]
Since we have the roots $a$ and $b$, the required equation is
\[\begin{align}
& (x-a)(x-b)=0 \\
& \Rightarrow (x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0 \\
& \Rightarrow \left( {{(x-2)}^{2}}-{{(\sqrt{3})}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}-4x+4-3=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we need to use the complex conjugates for simplifying the obtained complex numbers. So, that we can easily frame the required equation.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix
