
If \[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\] and \[ab=1\], then $a$ and $b$are the roots of the equation
A. \[{{x}^{2}}+4x-1=0\]
B. \[{{x}^{2}}-4x-1=0\]
C. \[{{x}^{2}}+4x+1=0\]
D. \[{{x}^{2}}-4x+1=0\]
Answer
161.7k+ views
Hint: In this question, we have to find the equation that is formed by the roots $a$ and $b$ where the root $a$ is the sum of the given series. The root $b$ is obtained by the given condition. Since the given series is a geometric series, we can find the sum of the infinite G.P for $a$ value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - Common ratio.
The sum of the infinite G.P is calculated by
${{S}_{\infty }}=\dfrac{a}{1-r}$
Here ${{S}_{\infty }}$ - Sum of the infinite terms of the series
The quadratic equation formed by two roots $a$ and $b$ is
$(x-a)(x-b)=0$
Complete step by step solution: Given series is
\[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\]
This is a geometric series. So, the sum of the $n$ terms is
\[\begin{align}
& a=\dfrac{1}{1-\left( \sqrt{3}-1 \right)} \\
& \Rightarrow a=\dfrac{1}{2-\sqrt{3}} \\
\end{align}\]
To simplify this complex number $2-\sqrt{3}$, multiplying and dividing this by its conjugate $2+\sqrt{3}$.
Then, we get
\[\begin{align}
& a=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\
& \text{ }=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
\end{align}\]
But we have \[ab=1\]. From this, we get
\[\begin{align}
& ab=1 \\
& \Rightarrow b=\dfrac{1}{a} \\
\end{align}\]
On substituting $a$ value, we get
\[\begin{align}
& b=\dfrac{1}{a} \\
& \text{ }=\dfrac{1}{2+\sqrt{3}} \\
\end{align}\]
Since the obtained value is a complex number, we need to multiply and divide this by its complex conjugate.
I.e.,
\[\begin{align}
& b=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \text{ }=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3} \\
\end{align}\]
Since we have the roots $a$ and $b$, the required equation is
\[\begin{align}
& (x-a)(x-b)=0 \\
& \Rightarrow (x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0 \\
& \Rightarrow \left( {{(x-2)}^{2}}-{{(\sqrt{3})}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}-4x+4-3=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we need to use the complex conjugates for simplifying the obtained complex numbers. So, that we can easily frame the required equation.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - Common ratio.
The sum of the infinite G.P is calculated by
${{S}_{\infty }}=\dfrac{a}{1-r}$
Here ${{S}_{\infty }}$ - Sum of the infinite terms of the series
The quadratic equation formed by two roots $a$ and $b$ is
$(x-a)(x-b)=0$
Complete step by step solution: Given series is
\[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\]
This is a geometric series. So, the sum of the $n$ terms is
\[\begin{align}
& a=\dfrac{1}{1-\left( \sqrt{3}-1 \right)} \\
& \Rightarrow a=\dfrac{1}{2-\sqrt{3}} \\
\end{align}\]
To simplify this complex number $2-\sqrt{3}$, multiplying and dividing this by its conjugate $2+\sqrt{3}$.
Then, we get
\[\begin{align}
& a=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\
& \text{ }=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
\end{align}\]
But we have \[ab=1\]. From this, we get
\[\begin{align}
& ab=1 \\
& \Rightarrow b=\dfrac{1}{a} \\
\end{align}\]
On substituting $a$ value, we get
\[\begin{align}
& b=\dfrac{1}{a} \\
& \text{ }=\dfrac{1}{2+\sqrt{3}} \\
\end{align}\]
Since the obtained value is a complex number, we need to multiply and divide this by its complex conjugate.
I.e.,
\[\begin{align}
& b=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \text{ }=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3} \\
\end{align}\]
Since we have the roots $a$ and $b$, the required equation is
\[\begin{align}
& (x-a)(x-b)=0 \\
& \Rightarrow (x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0 \\
& \Rightarrow \left( {{(x-2)}^{2}}-{{(\sqrt{3})}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}-4x+4-3=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we need to use the complex conjugates for simplifying the obtained complex numbers. So, that we can easily frame the required equation.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
