
If \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&1\\0&0\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Answer
162k+ views
Hint: First, find the adjoint matrix of the given matrix \[A\]. Substitute the values in the given required equation. Solve the equation by u\sing the matrix multiplication method and get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
\[\sin^{2}x + \cos^{2}x = 1\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\].
Let’s calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Now substitute the above value in the expression \[A\left( {adj A} \right)\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Solve the right-hand side by u\sing the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos^{2}x + \sin^{2}x}&{ - \sin x \cos x + \cos x \sin x}\\{ - \sin x \cos x + \cos x \sin x}&{\sin^{2}x + \cos^{2}x}\end{array}} \right]\]
Apply the standard trigonometric formula \[\sin^{2}x + \cos^{2}x = 1\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the number of rows of the resulting matrix is equal to the number of rows of the first matrix and the number of columns is equal to the number of columns of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
\[\sin^{2}x + \cos^{2}x = 1\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\].
Let’s calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Now substitute the above value in the expression \[A\left( {adj A} \right)\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Solve the right-hand side by u\sing the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos^{2}x + \sin^{2}x}&{ - \sin x \cos x + \cos x \sin x}\\{ - \sin x \cos x + \cos x \sin x}&{\sin^{2}x + \cos^{2}x}\end{array}} \right]\]
Apply the standard trigonometric formula \[\sin^{2}x + \cos^{2}x = 1\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the number of rows of the resulting matrix is equal to the number of rows of the first matrix and the number of columns is equal to the number of columns of the second matrix.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
