
If \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&1\\0&0\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Answer
232.8k+ views
Hint: First, find the adjoint matrix of the given matrix \[A\]. Substitute the values in the given required equation. Solve the equation by u\sing the matrix multiplication method and get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
\[\sin^{2}x + \cos^{2}x = 1\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\].
Let’s calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Now substitute the above value in the expression \[A\left( {adj A} \right)\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Solve the right-hand side by u\sing the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos^{2}x + \sin^{2}x}&{ - \sin x \cos x + \cos x \sin x}\\{ - \sin x \cos x + \cos x \sin x}&{\sin^{2}x + \cos^{2}x}\end{array}} \right]\]
Apply the standard trigonometric formula \[\sin^{2}x + \cos^{2}x = 1\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the number of rows of the resulting matrix is equal to the number of rows of the first matrix and the number of columns is equal to the number of columns of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
\[\sin^{2}x + \cos^{2}x = 1\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\].
Let’s calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Now substitute the above value in the expression \[A\left( {adj A} \right)\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Solve the right-hand side by u\sing the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos^{2}x + \sin^{2}x}&{ - \sin x \cos x + \cos x \sin x}\\{ - \sin x \cos x + \cos x \sin x}&{\sin^{2}x + \cos^{2}x}\end{array}} \right]\]
Apply the standard trigonometric formula \[\sin^{2}x + \cos^{2}x = 1\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the number of rows of the resulting matrix is equal to the number of rows of the first matrix and the number of columns is equal to the number of columns of the second matrix.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

