
If \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&1\\0&0\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Answer
208.2k+ views
Hint: First, find the adjoint matrix of the given matrix \[A\]. Substitute the values in the given required equation. Solve the equation by u\sing the matrix multiplication method and get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
\[\sin^{2}x + \cos^{2}x = 1\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\].
Let’s calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Now substitute the above value in the expression \[A\left( {adj A} \right)\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Solve the right-hand side by u\sing the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos^{2}x + \sin^{2}x}&{ - \sin x \cos x + \cos x \sin x}\\{ - \sin x \cos x + \cos x \sin x}&{\sin^{2}x + \cos^{2}x}\end{array}} \right]\]
Apply the standard trigonometric formula \[\sin^{2}x + \cos^{2}x = 1\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the number of rows of the resulting matrix is equal to the number of rows of the first matrix and the number of columns is equal to the number of columns of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
\[\sin^{2}x + \cos^{2}x = 1\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\].
Let’s calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Now substitute the above value in the expression \[A\left( {adj A} \right)\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}\\{ - \sin x}&{\cos x}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos x}&{ - \sin x}\\{\sin x}&{\cos x}\end{array}} \right]\]
Solve the right-hand side by u\sing the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{\cos^{2}x + \sin^{2}x}&{ - \sin x \cos x + \cos x \sin x}\\{ - \sin x \cos x + \cos x \sin x}&{\sin^{2}x + \cos^{2}x}\end{array}} \right]\]
Apply the standard trigonometric formula \[\sin^{2}x + \cos^{2}x = 1\].
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the number of rows of the resulting matrix is equal to the number of rows of the first matrix and the number of columns is equal to the number of columns of the second matrix.
Recently Updated Pages
Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2021 Paper with Solutions PDF for Free

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT Fees Structure 2025

Top IIT Colleges in India 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

