
If \[A = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\], then which of the following statement is not correct?
A. A is an orthogonal matrix
B. \[A'\] is orthogonal matrix
C. Determinant A = 1
D. A is not invertible
Answer
161.1k+ views
Hint: To check whether the matrix is orthogonal or not, we will find whether the product of A and its transpose is an identity matrix. Then we find the determinant value of the given matrix to check whether the given matrix is invertible or not.
Formula used:
If A is an orthogonal matrix, then \[AA' = I\] where \[A'\] is a transpose matrix of A and I is an identity matrix.
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\].
To transpose a matrix, we will interchange rows into columns.
The transpose of A is
\[A' = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right]\]
Now we will compute the product of \[A\] and \[A'\]
\[AA' = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right]\]
\[ \Rightarrow AA' = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\theta + {{\sin }^2}\theta }&{\cos \theta \sin \theta - \cos \theta \sin \theta }\\{\cos \theta \sin \theta - \cos \theta \sin \theta }&{{{\sin }^2}\theta + {{\cos }^2}\theta }\end{array}} \right]\]
\[ \Rightarrow AA' = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Thus, A is an orthogonal matrix.
We will check whether \[A'\] is an orthogonal matrix.
If \[A'{\left( {A'} \right)^\prime } = I\], then \[A'\] is an orthogonal matrix.
We know that \[{\left( {A'} \right)^\prime } = A\].
Putting \[{\left( {A'} \right)^\prime } = A\] in \[A'{\left( {A'} \right)^\prime }\]
\[A'{\left( {A'} \right)^\prime }\]
\[ = A'A\]
\[ = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\theta + {{\sin }^2}\theta }&{ - \cos \theta \sin \theta + \cos \theta \sin \theta }\\{ - \cos \theta \sin \theta + \cos \theta \sin \theta }&{{{\sin }^2}\theta + {{\cos }^2}\theta }\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ = I\]
Thus \[A'\] is an orthogonal matrix.
Now we calculate the determinant of A.
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = {\cos ^2}\theta + {\sin ^2}\theta \]
\[ \Rightarrow \left| A \right| = 1 \ne 0\]
Since \[\left| A \right| \ne 0\], the matrix is an invertible matrix.
Hence option D is the correct option.
Note: Students often confused with invertible and non-invertible matrix. If the determinant value of a matrix is not equal to zero, then the matrix is invertible. If the determinant value of a matrix is equal to zero, then the matrix is noninvertible.
Formula used:
If A is an orthogonal matrix, then \[AA' = I\] where \[A'\] is a transpose matrix of A and I is an identity matrix.
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\].
To transpose a matrix, we will interchange rows into columns.
The transpose of A is
\[A' = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right]\]
Now we will compute the product of \[A\] and \[A'\]
\[AA' = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right]\]
\[ \Rightarrow AA' = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\theta + {{\sin }^2}\theta }&{\cos \theta \sin \theta - \cos \theta \sin \theta }\\{\cos \theta \sin \theta - \cos \theta \sin \theta }&{{{\sin }^2}\theta + {{\cos }^2}\theta }\end{array}} \right]\]
\[ \Rightarrow AA' = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
Thus, A is an orthogonal matrix.
We will check whether \[A'\] is an orthogonal matrix.
If \[A'{\left( {A'} \right)^\prime } = I\], then \[A'\] is an orthogonal matrix.
We know that \[{\left( {A'} \right)^\prime } = A\].
Putting \[{\left( {A'} \right)^\prime } = A\] in \[A'{\left( {A'} \right)^\prime }\]
\[A'{\left( {A'} \right)^\prime }\]
\[ = A'A\]
\[ = \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\theta + {{\sin }^2}\theta }&{ - \cos \theta \sin \theta + \cos \theta \sin \theta }\\{ - \cos \theta \sin \theta + \cos \theta \sin \theta }&{{{\sin }^2}\theta + {{\cos }^2}\theta }\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ = I\]
Thus \[A'\] is an orthogonal matrix.
Now we calculate the determinant of A.
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = {\cos ^2}\theta + {\sin ^2}\theta \]
\[ \Rightarrow \left| A \right| = 1 \ne 0\]
Since \[\left| A \right| \ne 0\], the matrix is an invertible matrix.
Hence option D is the correct option.
Note: Students often confused with invertible and non-invertible matrix. If the determinant value of a matrix is not equal to zero, then the matrix is invertible. If the determinant value of a matrix is equal to zero, then the matrix is noninvertible.
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
