Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If A=[2301], then find the value of det(A4)+det(A10(Adj(2A))10).

Answer
VerifiedVerified
206.7k+ views
like imagedislike image
Hint: We find the determinant value of the matrix A. Then we will find the value of det(A4) by using the theorem if the determinate value of the matrix A is k, then the determinate value of An is kn. After that we will calculate the matrices A10 and (Adj(2A))10. Then we can calculate the value det(A4)+det(A10(Adj(2A))10).

Formula used:
If the determinate value of the matrix A is k, then the determinate value of An is kn.

Complete step by step solution:
Given matrix is A=[2301].
The determinate of matrix A is |A|=|2301|
  =2(1)03
 =2
Apply the theorem “if the determinate value of the matrix A is k, then the determinate value of An is kn. “
Therefore, the value of det(A4) is (2)4=16.
Now finding the matrix A2
A2=[2301][2301]
=[22+0323+3(1)02+0(1)30+(1)(1)]
=[22301]
Now finding the matrix A4
A4=[22301][22301]
 =[24+03223+31022+0130+11]
=[241501]
 =[2424101]
So on.
Similarly, An=[2n2n10(1)n]
Putting n=10
A10=[21021010(1)10]
=[1024102301]
So, 2A=[4602]
Now we will find Adj2A
Adj2A=[2604]
Now we will calculate (Adj2A)2
(Adj2A)2=[2604][2604]
 =[(2)2+(6)0(6)(2)+4(6)0(2)+400(6)+44]
 =[2212016]
 =4[1304]
(Adj2A)4=4[1304]×4[1304]
  =42[1×1+(3)×01(3)+4(3)0(1)+400(3)+44]
=24[115016]
 =24[1(241)024]
Similarly, (Adj2A)10=210[1(2101)0210]
=210[1102301024]
Now finding the matrix A10(Adj(2A))10
A10(Adj(2A))10=[1024102301]210[1102301024]
  =[102410241023+2101023012101024]
  =[01023(1+210)012101024]
The determinate of the matrix A10(Adj(2A))10 is
det(A10(Adj(2A))10)=|01023(1+210)012101024|
=0
Now we will put the value of det(A10(Adj(2A))10) in expressiondet(A4)+det(A10(Adj(2A))10)
det(A4)+det(A10(Adj(2A))10)
=16+0
=16
Hence the value of det(A4)+det(A10(Adj(2A))10) is 16.
Note The theorem” if the determinate value of the matrix A is k, then the determinate value of An is kn. “does not applicable for calculation det(A10(Adj(2A))10). Students often calculate the matrices A,A2,A3,,A10. But it is long process. For the shortcut we will find the matrices A2 and A4. After that we will get a pattern and from the pattern, we can get matrix A10. Similar way, we will calculate (Adj(2A))10.