
If \[A = \left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\], then find the value of \[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\].
Answer
161.1k+ views
Hint: We find the determinant value of the matrix \[A\]. Then we will find the value of \[\det \left( {{A^4}} \right)\] by using the theorem if the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\]. After that we will calculate the matrices \[{A^{10}}\] and \[{\left( {Adj\left( {2A} \right)} \right)^{10}}\]. Then we can calculate the value \[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\].
Formula used:
If the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\].
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\].
The determinate of matrix \[A\] is \[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right|\]
\[ = 2 \cdot \left( { - 1} \right) - 0 \cdot 3\]
\[ = - 2\]
Apply the theorem “if the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\]. “
Therefore, the value of \[\det \left( {{A^4}} \right)\] is \[{\left( { - 2} \right)^4} = 16\].
Now finding the matrix \[{A^2}\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^2} + 0 \cdot 3}&{2 \cdot 3 + 3 \cdot \left( { - 1} \right)}\\{0 \cdot 2 + 0 \cdot \left( { - 1} \right)}&{3 \cdot 0 + \left( { - 1} \right) \cdot \left( { - 1} \right)}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^2}}&3\\0&1\end{array}} \right]\]
Now finding the matrix \[{A^4}\]
\[{A^4} = \left[ {\begin{array}{*{20}{c}}{{2^2}}&3\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{2^2}}&3\\0&1\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^4} + 0 \cdot 3}&{{2^2} \cdot 3 + 3 \cdot 1}\\{0 \cdot {2^2} + 0 \cdot 1}&{3 \cdot 0 + 1 \cdot 1}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^4}}&{15}\\0&1\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^4}}&{{2^4} - 1}\\0&1\end{array}} \right]\]
So on.
Similarly, \[{A^n} = \left[ {\begin{array}{*{20}{c}}{{2^n}}&{{2^n} - 1}\\0&{{{\left( { - 1} \right)}^n}}\end{array}} \right]\]
Putting \[n = 10\]
\[{A^{10}} = \left[ {\begin{array}{*{20}{c}}{{2^{10}}}&{{2^{10}} - 1}\\0&{{{\left( { - 1} \right)}^{10}}}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{1024}&{1023}\\0&1\end{array}} \right]\]
So, \[2A = \left[ {\begin{array}{*{20}{c}}4&6\\0&{ - 2}\end{array}} \right]\]
Now we will find \[Adj\,2A\]
\[Adj\,\,2A = \left[ {\begin{array}{*{20}{c}}{ - 2}&{ - 6}\\0&4\end{array}} \right]\]
Now we will calculate \[{\left( {Adj\,\,2A} \right)^2}\]
\[{\left( {Adj\,\,2A} \right)^2} = \left[ {\begin{array}{*{20}{c}}{ - 2}&{ - 6}\\0&4\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 2}&{ - 6}\\0&4\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{{\left( { - 2} \right)}^2} + \left( { - 6} \right) \cdot 0}&{\left( { - 6} \right) \cdot \left( { - 2} \right) + 4 \cdot \left( { - 6} \right)}\\{0 \cdot \left( { - 2} \right) + 4 \cdot 0}&{0 \cdot \left( { - 6} \right) + 4 \cdot 4}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^2}}&{ - 12}\\0&{16}\end{array}} \right]\]
\[ = 4\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\0&4\end{array}} \right]\]
\[{\left( {Adj\,\,2A} \right)^4} = 4\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\0&4\end{array}} \right] \times 4\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\0&4\end{array}} \right]\]
\[ = {4^2}\left[ {\begin{array}{*{20}{c}}{1 \times 1 + \left( { - 3} \right) \times 0}&{1 \cdot \left( { - 3} \right) + 4 \cdot \left( { - 3} \right)}\\{0 \cdot \left( 1 \right) + 4 \cdot 0}&{0 \cdot \left( { - 3} \right) + 4 \cdot 4}\end{array}} \right]\]
\[ = {2^4}\left[ {\begin{array}{*{20}{c}}1&{ - 15}\\0&{16}\end{array}} \right]\]
\[ = {2^4}\left[ {\begin{array}{*{20}{c}}1&{ - \left( {{2^4} - 1} \right)}\\0&{{2^4}}\end{array}} \right]\]
Similarly, \[{\left( {Adj\,\,2A} \right)^{10}} = {2^{10}}\left[ {\begin{array}{*{20}{c}}1&{ - \left( {{2^{10}} - 1} \right)}\\0&{{2^{10}}}\end{array}} \right]\]
\[ = {2^{10}}\left[ {\begin{array}{*{20}{c}}1&{ - 1023}\\0&{1024}\end{array}} \right]\]
Now finding the matrix \[{A^{10}} - {\left( {Adj\left( {2A} \right)} \right)^{10}}\]
\[{A^{10}} - {\left( {Adj\left( {2A} \right)} \right)^{10}} = \left[ {\begin{array}{*{20}{c}}{1024}&{1023}\\0&1\end{array}} \right] - {2^{10}}\left[ {\begin{array}{*{20}{c}}1&{ - 1023}\\0&{1024}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{1024 - 1024}&{1023 + {2^{10}} \cdot 1023}\\0&{1 - {2^{10}} \cdot 1024}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}0&{1023\left( {1 + {2^{10}}} \right)}\\0&{1 - {2^{10}} \cdot 1024}\end{array}} \right]\]
The determinate of the matrix \[{A^{10}} - {\left( {Adj\left( {2A} \right)} \right)^{10}}\] is
\[\det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right) = \left| {\begin{array}{*{20}{c}}0&{1023\left( {1 + {2^{10}}} \right)}\\0&{1 - {2^{10}} \cdot 1024}\end{array}} \right|\]
\[ = 0\]
Now we will put the value of \[\det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\] in expression\[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\]
\[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\]
\[ = 16 + 0\]
\[ = 16\]
Hence the value of \[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\] is 16.
Note The theorem” if the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\]. “does not applicable for calculation \[\det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\]. Students often calculate the matrices \[A,{A^2},{A^3}, \cdots ,{A^{10}}\]. But it is long process. For the shortcut we will find the matrices \[{A^2}\] and \[{A^4}\]. After that we will get a pattern and from the pattern, we can get matrix \[{A^{10}}\]. Similar way, we will calculate \[{\left( {Adj\left( {2A} \right)} \right)^{10}}\].
Formula used:
If the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\].
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\].
The determinate of matrix \[A\] is \[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right|\]
\[ = 2 \cdot \left( { - 1} \right) - 0 \cdot 3\]
\[ = - 2\]
Apply the theorem “if the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\]. “
Therefore, the value of \[\det \left( {{A^4}} \right)\] is \[{\left( { - 2} \right)^4} = 16\].
Now finding the matrix \[{A^2}\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^2} + 0 \cdot 3}&{2 \cdot 3 + 3 \cdot \left( { - 1} \right)}\\{0 \cdot 2 + 0 \cdot \left( { - 1} \right)}&{3 \cdot 0 + \left( { - 1} \right) \cdot \left( { - 1} \right)}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^2}}&3\\0&1\end{array}} \right]\]
Now finding the matrix \[{A^4}\]
\[{A^4} = \left[ {\begin{array}{*{20}{c}}{{2^2}}&3\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{2^2}}&3\\0&1\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^4} + 0 \cdot 3}&{{2^2} \cdot 3 + 3 \cdot 1}\\{0 \cdot {2^2} + 0 \cdot 1}&{3 \cdot 0 + 1 \cdot 1}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^4}}&{15}\\0&1\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^4}}&{{2^4} - 1}\\0&1\end{array}} \right]\]
So on.
Similarly, \[{A^n} = \left[ {\begin{array}{*{20}{c}}{{2^n}}&{{2^n} - 1}\\0&{{{\left( { - 1} \right)}^n}}\end{array}} \right]\]
Putting \[n = 10\]
\[{A^{10}} = \left[ {\begin{array}{*{20}{c}}{{2^{10}}}&{{2^{10}} - 1}\\0&{{{\left( { - 1} \right)}^{10}}}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{1024}&{1023}\\0&1\end{array}} \right]\]
So, \[2A = \left[ {\begin{array}{*{20}{c}}4&6\\0&{ - 2}\end{array}} \right]\]
Now we will find \[Adj\,2A\]
\[Adj\,\,2A = \left[ {\begin{array}{*{20}{c}}{ - 2}&{ - 6}\\0&4\end{array}} \right]\]
Now we will calculate \[{\left( {Adj\,\,2A} \right)^2}\]
\[{\left( {Adj\,\,2A} \right)^2} = \left[ {\begin{array}{*{20}{c}}{ - 2}&{ - 6}\\0&4\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 2}&{ - 6}\\0&4\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{{\left( { - 2} \right)}^2} + \left( { - 6} \right) \cdot 0}&{\left( { - 6} \right) \cdot \left( { - 2} \right) + 4 \cdot \left( { - 6} \right)}\\{0 \cdot \left( { - 2} \right) + 4 \cdot 0}&{0 \cdot \left( { - 6} \right) + 4 \cdot 4}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{{2^2}}&{ - 12}\\0&{16}\end{array}} \right]\]
\[ = 4\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\0&4\end{array}} \right]\]
\[{\left( {Adj\,\,2A} \right)^4} = 4\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\0&4\end{array}} \right] \times 4\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\0&4\end{array}} \right]\]
\[ = {4^2}\left[ {\begin{array}{*{20}{c}}{1 \times 1 + \left( { - 3} \right) \times 0}&{1 \cdot \left( { - 3} \right) + 4 \cdot \left( { - 3} \right)}\\{0 \cdot \left( 1 \right) + 4 \cdot 0}&{0 \cdot \left( { - 3} \right) + 4 \cdot 4}\end{array}} \right]\]
\[ = {2^4}\left[ {\begin{array}{*{20}{c}}1&{ - 15}\\0&{16}\end{array}} \right]\]
\[ = {2^4}\left[ {\begin{array}{*{20}{c}}1&{ - \left( {{2^4} - 1} \right)}\\0&{{2^4}}\end{array}} \right]\]
Similarly, \[{\left( {Adj\,\,2A} \right)^{10}} = {2^{10}}\left[ {\begin{array}{*{20}{c}}1&{ - \left( {{2^{10}} - 1} \right)}\\0&{{2^{10}}}\end{array}} \right]\]
\[ = {2^{10}}\left[ {\begin{array}{*{20}{c}}1&{ - 1023}\\0&{1024}\end{array}} \right]\]
Now finding the matrix \[{A^{10}} - {\left( {Adj\left( {2A} \right)} \right)^{10}}\]
\[{A^{10}} - {\left( {Adj\left( {2A} \right)} \right)^{10}} = \left[ {\begin{array}{*{20}{c}}{1024}&{1023}\\0&1\end{array}} \right] - {2^{10}}\left[ {\begin{array}{*{20}{c}}1&{ - 1023}\\0&{1024}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{1024 - 1024}&{1023 + {2^{10}} \cdot 1023}\\0&{1 - {2^{10}} \cdot 1024}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}0&{1023\left( {1 + {2^{10}}} \right)}\\0&{1 - {2^{10}} \cdot 1024}\end{array}} \right]\]
The determinate of the matrix \[{A^{10}} - {\left( {Adj\left( {2A} \right)} \right)^{10}}\] is
\[\det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right) = \left| {\begin{array}{*{20}{c}}0&{1023\left( {1 + {2^{10}}} \right)}\\0&{1 - {2^{10}} \cdot 1024}\end{array}} \right|\]
\[ = 0\]
Now we will put the value of \[\det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\] in expression\[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\]
\[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\]
\[ = 16 + 0\]
\[ = 16\]
Hence the value of \[\det \left( {{A^4}} \right) + \det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\] is 16.
Note The theorem” if the determinate value of the matrix \[A\] is \[k\], then the determinate value of \[{A^n}\] is \[{k^n}\]. “does not applicable for calculation \[\det \left( {{A^{10}} - {{\left( {Adj\left( {2A} \right)} \right)}^{10}}} \right)\]. Students often calculate the matrices \[A,{A^2},{A^3}, \cdots ,{A^{10}}\]. But it is long process. For the shortcut we will find the matrices \[{A^2}\] and \[{A^4}\]. After that we will get a pattern and from the pattern, we can get matrix \[{A^{10}}\]. Similar way, we will calculate \[{\left( {Adj\left( {2A} \right)} \right)^{10}}\].
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
