
If A is a square matrix, then which of the following is true for \[A + {A^T}\]?
A. Nonsingular matrix
B. Symmetric matrix
C. Skew-symmetric matrix
D. Unit matrix
Answer
216.6k+ views
Hint: To solve this question, we check whether the transpose of the given matrix is a symmetric matric or skew-symmetric matrix. To check it, we will take find the transpose of \[A + {A^T}\] and apply the transpose of the sum of two matrices. Then apply transpose of transpose a matrix and commutative property to get the required answer.
Formula Used:
The transpose of the given matrix is the given matrix.
\[{\left( {{A^T}} \right)^T} = A\]
Transpose of the sum of two matrices:
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
Complete step by step solution:
Given that A is a square matrix. Given matrix is \[A + {A^T}\].
Now we will find the transpose of the given matrix
\[{\left( {A + {A^T}} \right)^T}\]
Now apply the transpose of the sum of two matrices:
\[ = {\left( A \right)^T} + {\left( {{A^T}} \right)^T}\]
Now applying the transpose of a matrix
\[ = {\left( A \right)^T} + A\]
The sum of matrices follows the commutative property
\[ = A + {\left( A \right)^T}\]
Since \[{\left( {A + {A^T}} \right)^T} = A + {A^T}\], it is a symmetric matrix.
Hence option B is the correct option.
Additional information:
The sum of a matrix with the transpose of the matrix is possible when the matrix is a square matrix. The symmetric property and skew-symmetric property are applicable to a square matrix.
In the transpose matrix, we interchange the rows into columns or columns into rows.
Note: Students are often confused about the sum of matrices and the multiplication of matrices. The sum of matrices follows the commutative property. But the multiplication of two matrices does not follow the commutative property. Thus we can use the commutative property in the \[ {\left( A \right)^T} + A\] to get final answer.
Formula Used:
The transpose of the given matrix is the given matrix.
\[{\left( {{A^T}} \right)^T} = A\]
Transpose of the sum of two matrices:
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
Complete step by step solution:
Given that A is a square matrix. Given matrix is \[A + {A^T}\].
Now we will find the transpose of the given matrix
\[{\left( {A + {A^T}} \right)^T}\]
Now apply the transpose of the sum of two matrices:
\[ = {\left( A \right)^T} + {\left( {{A^T}} \right)^T}\]
Now applying the transpose of a matrix
\[ = {\left( A \right)^T} + A\]
The sum of matrices follows the commutative property
\[ = A + {\left( A \right)^T}\]
Since \[{\left( {A + {A^T}} \right)^T} = A + {A^T}\], it is a symmetric matrix.
Hence option B is the correct option.
Additional information:
The sum of a matrix with the transpose of the matrix is possible when the matrix is a square matrix. The symmetric property and skew-symmetric property are applicable to a square matrix.
In the transpose matrix, we interchange the rows into columns or columns into rows.
Note: Students are often confused about the sum of matrices and the multiplication of matrices. The sum of matrices follows the commutative property. But the multiplication of two matrices does not follow the commutative property. Thus we can use the commutative property in the \[ {\left( A \right)^T} + A\] to get final answer.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

