
If \[16\] identical pencils are distributed among 4 children such that each gets at least 3 pencils. Then, find the number of ways of distributing the pencils.
A. \[15\]
B. \[25\]
C. \[35\]
D. \[40\]
Answer
160.8k+ views
Hint: First, calculate the number of pencils equally distributed to each child. Then, calculate the number of ways of distributing the remaining identical pencils among the 4 children and get the required answer.
Formula Used: The number of ways of distributing \[n\] identical objects among the \[r\] groups is: \[{}^{n + r - 1}{C_{r - 1}} = \dfrac{{\left( {n + r - 1} \right)!}}{{n!\left( {r - 1} \right)!}}\]
Complete step by step solution: Given:
\[16\] identical pencils are distributed among 4 children
each child gets at least 3 pencils
Here, pencils are identical. So, it doesn’t matter which pencil a child receives.
It is given that each child must receive at least 3 pencils.
So, distribute 3 pencils to each child.
Number of distributed pencils: \[3 \times 4 = 12\]
The remaining number of pencils are: \[16 - 12 = 4\]
Now we must distribute 4 identical pencils to 4 children.
So, apply the formula of the number of ways of distributing \[n\] identical objects among the \[r\] people.
We get,
\[{}^{4 + 4 - 1}{C_{4 - 1}} = \dfrac{{7!}}{{4!\left( {4 - 1} \right)!}}\]
\[ \Rightarrow {}^{4 + 4 - 1}{C_{4 - 1}} = \dfrac{{7 \times 6 \times 5 \times 4!}}{{4! \times 3!}}\]
\[ \Rightarrow {}^{4 + 4 - 1}{C_{4 - 1}} = 35\]
Therefore, the number of ways of distributing \[16\] identical pencils among 4 children such that each child gets at least 3 pencils are \[35\].
Option ‘C’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Formulas:
\[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Formula Used: The number of ways of distributing \[n\] identical objects among the \[r\] groups is: \[{}^{n + r - 1}{C_{r - 1}} = \dfrac{{\left( {n + r - 1} \right)!}}{{n!\left( {r - 1} \right)!}}\]
Complete step by step solution: Given:
\[16\] identical pencils are distributed among 4 children
each child gets at least 3 pencils
Here, pencils are identical. So, it doesn’t matter which pencil a child receives.
It is given that each child must receive at least 3 pencils.
So, distribute 3 pencils to each child.
Number of distributed pencils: \[3 \times 4 = 12\]
The remaining number of pencils are: \[16 - 12 = 4\]
Now we must distribute 4 identical pencils to 4 children.
So, apply the formula of the number of ways of distributing \[n\] identical objects among the \[r\] people.
We get,
\[{}^{4 + 4 - 1}{C_{4 - 1}} = \dfrac{{7!}}{{4!\left( {4 - 1} \right)!}}\]
\[ \Rightarrow {}^{4 + 4 - 1}{C_{4 - 1}} = \dfrac{{7 \times 6 \times 5 \times 4!}}{{4! \times 3!}}\]
\[ \Rightarrow {}^{4 + 4 - 1}{C_{4 - 1}} = 35\]
Therefore, the number of ways of distributing \[16\] identical pencils among 4 children such that each child gets at least 3 pencils are \[35\].
Option ‘C’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Formulas:
\[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
