Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{4}$

Answer
VerifiedVerified
162.3k+ views
Hint:
  • • In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$. So, we will consider this as equation 1.

  • • Next, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$ and then we will use the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-\theta \right)$ is equal to $\cot \theta $.

  • • From this, we will obtain equation 2.

  • • Now we will add equations 1 and 2 and after that, we will split $\text{ }\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.

  • • We will further take the LCM to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.


  • Formula Used: We will use the following formulas:
    1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
    2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
    3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$

    Complete step by step solution: In this question, we are given:
    $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
    First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
    $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
    By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
    $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
    We will now add equations (1) and (2) to get.
    $\begin{align}
      & I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
     & \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
    \end{align}$
    Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
    $\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
    Take LCM in the denominator to get
    $\begin{align}
      & \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
     & \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
     & \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
    \end{align}$
    We will further integrate 1 with respect to $\theta $.
    $\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
    At last, substitute the values of the limit to get
    $\begin{align}
      & \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
     & \Rightarrow I=\dfrac{\pi }{2\times 2} \\
     & \therefore I=\dfrac{\pi }{4} \\
    \end{align}$

    Option ‘D’ is correct

    Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.