
Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{4}$
Answer
216k+ views
Hint:
• Next, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$ and then we will use the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-\theta \right)$ is equal to $\cot \theta $.
• From this, we will obtain equation 2.
• Now we will add equations 1 and 2 and after that, we will split $\text{ }\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
• We will further take the LCM to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.
Formula Used: We will use the following formulas:
1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step by step solution: In this question, we are given:
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
We will now add equations (1) and (2) to get.
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
\end{align}$
Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
Take LCM in the denominator to get
$\begin{align}
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
\end{align}$
We will further integrate 1 with respect to $\theta $.
$\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
At last, substitute the values of the limit to get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Option ‘D’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
- • In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$. So, we will consider this as equation 1.
Formula Used: We will use the following formulas:
1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step by step solution: In this question, we are given:
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
We will now add equations (1) and (2) to get.
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
\end{align}$
Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
Take LCM in the denominator to get
$\begin{align}
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
\end{align}$
We will further integrate 1 with respect to $\theta $.
$\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
At last, substitute the values of the limit to get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Option ‘D’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
Recently Updated Pages
JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

