
Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{4}$
Answer
162.3k+ views
Hint:
• Next, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$ and then we will use the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-\theta \right)$ is equal to $\cot \theta $.
• From this, we will obtain equation 2.
• Now we will add equations 1 and 2 and after that, we will split $\text{ }\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
• We will further take the LCM to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.
Formula Used: We will use the following formulas:
1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step by step solution: In this question, we are given:
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
We will now add equations (1) and (2) to get.
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
\end{align}$
Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
Take LCM in the denominator to get
$\begin{align}
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
\end{align}$
We will further integrate 1 with respect to $\theta $.
$\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
At last, substitute the values of the limit to get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Option ‘D’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
- • In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$. So, we will consider this as equation 1.
Formula Used: We will use the following formulas:
1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step by step solution: In this question, we are given:
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
We will now add equations (1) and (2) to get.
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
\end{align}$
Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
Take LCM in the denominator to get
$\begin{align}
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
\end{align}$
We will further integrate 1 with respect to $\theta $.
$\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
At last, substitute the values of the limit to get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Option ‘D’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Modern Physics Chapter for JEE Advanced Physics

Mechanics Chapter for JEE Advanced Physics

JEE Gaseous and Liquid States Important Concepts and Tips

Electricity and Magnetism Chapter for JEE Advanced Physics

JEE Algebra Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
