
Find the inverse matrix of the matrix \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\] .
A. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - 4}&{\dfrac{5}{2}}\\1&{ - 6}&3\\1&2&{ - 1}\end{array}} \right]\]
C. \[\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}1&2&3\\3&2&1\\4&2&3\end{array}} \right]\]
D. \[\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 1}\\{ - 8}&6&{ - 2}\\5&{ - 3}&1\end{array}} \right]\]
Answer
161.1k+ views
Hint: First, calculate the determinant of the given matrix to check whether the inverse matrix is defined or not. If the determinant is non-zero, then calculate the adjoint matrix by calculating the co-factors of the matrix. In the end, substitute the values in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\] and get the required answer.
Formula used:
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\].
Let consider,
\[A = \left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\]
To check whether the inverse exists or not calculate the determinant of the matrix.
Apply the formula for the determinant of the \[3 \times 3\] matrix.
\[\left| A \right| = 0\left( {2 \times 1 - 1 \times 3} \right) - 1\left( {1 \times 1 - 3 \times 3} \right) + 2\left( {1 \times 1 - 3 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 0\left( {2 - 3} \right) - 1\left( {1 - 9} \right) + 2\left( {1 - 6} \right)\]
\[ \Rightarrow \left| A \right| = 0 - 1\left( { - 8} \right) + 2\left( { - 5} \right)\]
\[ \Rightarrow \left| A \right| = 8 - 10\]
\[ \Rightarrow \left| A \right| = - 2\]
Since the determinant is a non-zero number.
Therefore, the inverse for the matrix exists.
Now calculate the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {2 \times 1 - 1 \times 3} \right) = - 1\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {1 \times 1 - 3 \times 3} \right) = 8\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {1 \times 1 - 3 \times 2} \right) = - 5\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {1 \times 1 - 1 \times 2} \right) = 1\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {0 \times 1 - 3 \times 2} \right) = - 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 1 - 3 \times 1} \right) = 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {1 \times 3 - 2 \times 2} \right) = - 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {0 \times 3 - 1 \times 2} \right) = 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 2 - 1 \times 1} \right) = - 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{ - 1}&8&{ - 5}\\1&{ - 6}&3\\{ - 1}&2&{ - 1}\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{ - \dfrac{3}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the inverse matrix of any matrix exists if the determinant of that matrix is non-zero. So, first, check whether the determinant is nonzero or not. And the product of the inverse matrix and the original matrix is an identity matrix.
Formula used:
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\].
Let consider,
\[A = \left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\]
To check whether the inverse exists or not calculate the determinant of the matrix.
Apply the formula for the determinant of the \[3 \times 3\] matrix.
\[\left| A \right| = 0\left( {2 \times 1 - 1 \times 3} \right) - 1\left( {1 \times 1 - 3 \times 3} \right) + 2\left( {1 \times 1 - 3 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 0\left( {2 - 3} \right) - 1\left( {1 - 9} \right) + 2\left( {1 - 6} \right)\]
\[ \Rightarrow \left| A \right| = 0 - 1\left( { - 8} \right) + 2\left( { - 5} \right)\]
\[ \Rightarrow \left| A \right| = 8 - 10\]
\[ \Rightarrow \left| A \right| = - 2\]
Since the determinant is a non-zero number.
Therefore, the inverse for the matrix exists.
Now calculate the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {2 \times 1 - 1 \times 3} \right) = - 1\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {1 \times 1 - 3 \times 3} \right) = 8\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {1 \times 1 - 3 \times 2} \right) = - 5\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {1 \times 1 - 1 \times 2} \right) = 1\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {0 \times 1 - 3 \times 2} \right) = - 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 1 - 3 \times 1} \right) = 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {1 \times 3 - 2 \times 2} \right) = - 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {0 \times 3 - 1 \times 2} \right) = 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 2 - 1 \times 1} \right) = - 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{ - 1}&8&{ - 5}\\1&{ - 6}&3\\{ - 1}&2&{ - 1}\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{ - \dfrac{3}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the inverse matrix of any matrix exists if the determinant of that matrix is non-zero. So, first, check whether the determinant is nonzero or not. And the product of the inverse matrix and the original matrix is an identity matrix.
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
