
Find the inverse matrix of the matrix \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\] .
A. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - 4}&{\dfrac{5}{2}}\\1&{ - 6}&3\\1&2&{ - 1}\end{array}} \right]\]
C. \[\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}1&2&3\\3&2&1\\4&2&3\end{array}} \right]\]
D. \[\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 1}\\{ - 8}&6&{ - 2}\\5&{ - 3}&1\end{array}} \right]\]
Answer
216.9k+ views
Hint: First, calculate the determinant of the given matrix to check whether the inverse matrix is defined or not. If the determinant is non-zero, then calculate the adjoint matrix by calculating the co-factors of the matrix. In the end, substitute the values in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\] and get the required answer.
Formula used:
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\].
Let consider,
\[A = \left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\]
To check whether the inverse exists or not calculate the determinant of the matrix.
Apply the formula for the determinant of the \[3 \times 3\] matrix.
\[\left| A \right| = 0\left( {2 \times 1 - 1 \times 3} \right) - 1\left( {1 \times 1 - 3 \times 3} \right) + 2\left( {1 \times 1 - 3 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 0\left( {2 - 3} \right) - 1\left( {1 - 9} \right) + 2\left( {1 - 6} \right)\]
\[ \Rightarrow \left| A \right| = 0 - 1\left( { - 8} \right) + 2\left( { - 5} \right)\]
\[ \Rightarrow \left| A \right| = 8 - 10\]
\[ \Rightarrow \left| A \right| = - 2\]
Since the determinant is a non-zero number.
Therefore, the inverse for the matrix exists.
Now calculate the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {2 \times 1 - 1 \times 3} \right) = - 1\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {1 \times 1 - 3 \times 3} \right) = 8\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {1 \times 1 - 3 \times 2} \right) = - 5\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {1 \times 1 - 1 \times 2} \right) = 1\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {0 \times 1 - 3 \times 2} \right) = - 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 1 - 3 \times 1} \right) = 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {1 \times 3 - 2 \times 2} \right) = - 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {0 \times 3 - 1 \times 2} \right) = 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 2 - 1 \times 1} \right) = - 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{ - 1}&8&{ - 5}\\1&{ - 6}&3\\{ - 1}&2&{ - 1}\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{ - \dfrac{3}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the inverse matrix of any matrix exists if the determinant of that matrix is non-zero. So, first, check whether the determinant is nonzero or not. And the product of the inverse matrix and the original matrix is an identity matrix.
Formula used:
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\].
Let consider,
\[A = \left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\]
To check whether the inverse exists or not calculate the determinant of the matrix.
Apply the formula for the determinant of the \[3 \times 3\] matrix.
\[\left| A \right| = 0\left( {2 \times 1 - 1 \times 3} \right) - 1\left( {1 \times 1 - 3 \times 3} \right) + 2\left( {1 \times 1 - 3 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 0\left( {2 - 3} \right) - 1\left( {1 - 9} \right) + 2\left( {1 - 6} \right)\]
\[ \Rightarrow \left| A \right| = 0 - 1\left( { - 8} \right) + 2\left( { - 5} \right)\]
\[ \Rightarrow \left| A \right| = 8 - 10\]
\[ \Rightarrow \left| A \right| = - 2\]
Since the determinant is a non-zero number.
Therefore, the inverse for the matrix exists.
Now calculate the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {2 \times 1 - 1 \times 3} \right) = - 1\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {1 \times 1 - 3 \times 3} \right) = 8\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {1 \times 1 - 3 \times 2} \right) = - 5\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {1 \times 1 - 1 \times 2} \right) = 1\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {0 \times 1 - 3 \times 2} \right) = - 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 1 - 3 \times 1} \right) = 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {1 \times 3 - 2 \times 2} \right) = - 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {0 \times 3 - 1 \times 2} \right) = 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 2 - 1 \times 1} \right) = - 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{ - 1}&8&{ - 5}\\1&{ - 6}&3\\{ - 1}&2&{ - 1}\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{ - \dfrac{3}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the inverse matrix of any matrix exists if the determinant of that matrix is non-zero. So, first, check whether the determinant is nonzero or not. And the product of the inverse matrix and the original matrix is an identity matrix.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

