
Find the inverse matrix of the matrix \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\] .
A. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - 4}&{\dfrac{5}{2}}\\1&{ - 6}&3\\1&2&{ - 1}\end{array}} \right]\]
C. \[\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}1&2&3\\3&2&1\\4&2&3\end{array}} \right]\]
D. \[\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 1}\\{ - 8}&6&{ - 2}\\5&{ - 3}&1\end{array}} \right]\]
Answer
164.4k+ views
Hint: First, calculate the determinant of the given matrix to check whether the inverse matrix is defined or not. If the determinant is non-zero, then calculate the adjoint matrix by calculating the co-factors of the matrix. In the end, substitute the values in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\] and get the required answer.
Formula used:
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\].
Let consider,
\[A = \left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\]
To check whether the inverse exists or not calculate the determinant of the matrix.
Apply the formula for the determinant of the \[3 \times 3\] matrix.
\[\left| A \right| = 0\left( {2 \times 1 - 1 \times 3} \right) - 1\left( {1 \times 1 - 3 \times 3} \right) + 2\left( {1 \times 1 - 3 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 0\left( {2 - 3} \right) - 1\left( {1 - 9} \right) + 2\left( {1 - 6} \right)\]
\[ \Rightarrow \left| A \right| = 0 - 1\left( { - 8} \right) + 2\left( { - 5} \right)\]
\[ \Rightarrow \left| A \right| = 8 - 10\]
\[ \Rightarrow \left| A \right| = - 2\]
Since the determinant is a non-zero number.
Therefore, the inverse for the matrix exists.
Now calculate the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {2 \times 1 - 1 \times 3} \right) = - 1\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {1 \times 1 - 3 \times 3} \right) = 8\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {1 \times 1 - 3 \times 2} \right) = - 5\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {1 \times 1 - 1 \times 2} \right) = 1\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {0 \times 1 - 3 \times 2} \right) = - 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 1 - 3 \times 1} \right) = 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {1 \times 3 - 2 \times 2} \right) = - 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {0 \times 3 - 1 \times 2} \right) = 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 2 - 1 \times 1} \right) = - 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{ - 1}&8&{ - 5}\\1&{ - 6}&3\\{ - 1}&2&{ - 1}\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{ - \dfrac{3}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the inverse matrix of any matrix exists if the determinant of that matrix is non-zero. So, first, check whether the determinant is nonzero or not. And the product of the inverse matrix and the original matrix is an identity matrix.
Formula used:
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[\left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\].
Let consider,
\[A = \left[ {\begin{array}{*{20}{c}}0&1&2\\1&2&3\\3&1&1\end{array}} \right]\]
To check whether the inverse exists or not calculate the determinant of the matrix.
Apply the formula for the determinant of the \[3 \times 3\] matrix.
\[\left| A \right| = 0\left( {2 \times 1 - 1 \times 3} \right) - 1\left( {1 \times 1 - 3 \times 3} \right) + 2\left( {1 \times 1 - 3 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 0\left( {2 - 3} \right) - 1\left( {1 - 9} \right) + 2\left( {1 - 6} \right)\]
\[ \Rightarrow \left| A \right| = 0 - 1\left( { - 8} \right) + 2\left( { - 5} \right)\]
\[ \Rightarrow \left| A \right| = 8 - 10\]
\[ \Rightarrow \left| A \right| = - 2\]
Since the determinant is a non-zero number.
Therefore, the inverse for the matrix exists.
Now calculate the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix.
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {2 \times 1 - 1 \times 3} \right) = - 1\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {1 \times 1 - 3 \times 3} \right) = 8\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {1 \times 1 - 3 \times 2} \right) = - 5\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {1 \times 1 - 1 \times 2} \right) = 1\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {0 \times 1 - 3 \times 2} \right) = - 6\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 1 - 3 \times 1} \right) = 3\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {1 \times 3 - 2 \times 2} \right) = - 1\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {0 \times 3 - 1 \times 2} \right) = 2\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 2 - 1 \times 1} \right) = - 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{ - 1}&8&{ - 5}\\1&{ - 6}&3\\{ - 1}&2&{ - 1}\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}{ - 1}&1&{ - 1}\\8&{ - 6}&2\\{ - 5}&3&{ - 1}\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}}\\{ - 4}&3&{ - 1}\\{\dfrac{5}{2}}&{ - \dfrac{3}{2}}&{\dfrac{1}{2}}\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the inverse matrix of any matrix exists if the determinant of that matrix is non-zero. So, first, check whether the determinant is nonzero or not. And the product of the inverse matrix and the original matrix is an identity matrix.
Recently Updated Pages
Difference Between AC and DC Generator

Difference Between Starch and Cellulose - Introduction and Structural Difference

Know About Difference Between Zener Breakdown and Avalanche Breakdown

Stefan Boltzmann Law - Definition and Equation

Thermodynamics: Introduction, Laws, Systems, Notes PDF & Thermal Equilibrium

Thermodynamics and Thermochemistry- Definition, Equation, Laws, Difference, and Facts

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
